Supporting Tests of Autonomy:
Autonomy Requirements Tester
(ART)

Eugene V. McMahon
S&K Global Solutions (NASA)
Houston, TX

Copyright @ 2017 by Eugene V. McMahon. Permission grante€d to INCOSE to publish and use

CONTRIBUTORS

Carroll Thronesbery, PhD “Principal Investigator”

Ayman Qaddumi, MS “Software Developer”

Michael Merta, MA “Human Computer Interaction Designer”
Mike Monahan, “Business Developer”

Eugene McMahon, “Testing Designer”

SBIR and the ART project
High-level Diagram

Test Runner

Requirements in XML Format

Generating Test Plan from Requirements
ART Examples

 Advantages
e [Innovations
 Next Steps

~ NASA SBIR -3

NASA Small Business Innovation Research (SBIR) project titled
“Autonomy Requirements Tester” (ART) with the following goals:

« Design eXtensible Markup Language (XML) schema to define data models to support
app-level testing

» Describe potential approaches for semi-automatic test generation

* Design displays that support the management of requirements, test designs, and test
results

 Develop a Concept of Operations (ConOps) for the use of ART that employs the
following scenarios:
« Capture autonomy requirements
 Generate test specifications
» Execute the test specs
* Report results

Recent Survey ‘\

A recent survey of software developers reveled some of their top issues:

1. Requirements that are confusing or incomplete

2. Modifying software that is not documented, difficult to understand, or
difficult to see the relationship between requirements and software

3. Unrealistic expectations or deadlines

 This SBIR project directly addresses the first two issues

~ ART Flow Diagram s

High-level diagram of Autonomy Requirements Tester (ART)

Requirements Test Handler

Handler * View requirements
Enter traditional * Edittemplate forthe
Requirements test

Test Plan Test Runner
[csv) * Execute test

* Record testresults
requirement information
Enter expected behavior L) | i I Test Results
Generate requirements [cutoff values) = ':“L‘ -
XML Generate the test plan |csv)

View testresults

Publish / Subscribe Software

 Examples: cFS and ROS

« Component based design

e Publish-subscribe message communication to make component
apps independent

Computer System

Application Application Application
Component Component Component

1 2 3

CFE bus (Publish / Subscribe)

”—ﬂ
Test Runner Software

. Send specific test data to Application Under Test
. Recelve test results from Application Under Test

Computer System

Test Runner

Results)

Conditions)
Sub (Test

Pub (Test

Application
Component

2
(Under Test)

Sub

CFE bus (Publish / Subscribe)

Test]

: Input Message:
(Script Data) -

Test Spec

(Adaptation of ATML)
y=2
=7
Expected results
message:
Xx=1
yy=3
7z=1

Test2

Test Results Testl
<pass>
Test2
Expected
xx=1
yy=3
77=1
Observed
xx=0
yy=3
zz=1

Computer System

i

Pub (Test

Application
Test Runner Component
2

(Under Test)

Sub

Results)

Conditions)
Sub (Test

CFE bus (Publish / Subscribe)

Test Runner: Reads Test Spec,
Produces Test Results

Test]

: Input Message:
(Script Data) o

Test Spec

(Adaptation of ATML)
y=2
=7
Expected results
message:
Xx=1
yy=3
7z=1

Test2

Test Results Testl
<pass>
Test2
Expected
xx=1
yy=3
77=1
Observed
xx=0
yy=3
zz=1

Computer System

Could potentially act
as H/W simulator

i

Pub (Test

Application
Test Runner Component
2

(Under Test)

Sub

Results)

Conditions)
Sub (Test

CFE bus (Publish / Subscribe)

Test Runner: Reads Test Spec,
Produces Test Results

~ ART Flow Diagram ‘\

High-level diagram of Autonomy Requirements Tester

Requirements Test Handler

Handler * View requirements
* Enter traditional | * Edittemplate for the
Requirements test

Test Plan Test Runner
' * Execute test

* Record testresults
requirement information

. S— plgE .
* Enter expected behavior (xml; Edltmputvarl.able,
|cutoff values)

* Ge (C5v)
XML \--t:ﬂEFatE the test plan

* View testresults

: Test Results
* Generate requirements

Requirements in XML format

Requirements Behaviors

AUT-3 Monitor Battery Temperature Autonomy shall perform the following tiered response if the No action should be taken if Battery temp okay
battery temperature is above a pre-defined limit: All data needs to have consistent readings over a
A) Soft-reset the PSC period of time such as 5 of 6 readings must be the

B) Power-cycle the PSC same
C) Switch the PSC (via a CIM side switch) There is a limit to the number of times a command
can be sent to the hardware

XML Requirements

Generate Test Plan From Requirements

Observation from Solar Probe Plus autonomy requirements:

— Similarities from one requirement to the next

- Often a tiered response, when first tier doesn’t correct the issue, go to the
next tier

e Rule based behavior: If {condition} then {response}

— Similarities enable the formation of that could be
reused for generating tests

— Some additional parameters are needed in addition to the
template. A was developed to collect this data.

Template For Generating
Test Specification

AUT-3 Monitor Battery Temperature Autonomy shall perform the following tiered response if the
battery temperature 15 above a pre-defined limit:
A) Soft-reset the PSC
B) Power-cycle the PSC
C) Switch the PSC (via a CIM side switch)

Set nominal spacecraft system state
Verify autonomy takes no action
Inject fault

Verify faulted state (optional, especially level 0)

Verify autonomy response

Repeat steps 3-5 through all possible iterations
For tiered rule:
1. Inject fault corrected by 1% action

Inject fault corrected by 2d action

Inject fault corrected by 3d action

Inject unrecovered fault

Enter Design Values To Construct Initial Test

AUT-3 Monitor Battery Temperature Autonomy shall perform the following tiered response if the

battery temperature is above a pre-defined limit:
A) Soft-reset the PSC

B) Power-cycle the PSC

C) Switch the PSC (via a CIM side switch)

-

-

Persistence (m of n)

Max fire count

Priority

Enabled

Initial rule state (enabled/disabled)

battery temp

Battery temperature variable name (default from rgts xml)

160

pre-defined limit

‘ PSC_reset_cmd

‘ Soft-reset the PSC command name (default from rgts xml)

‘ PSC_pwr_cycle_cmd

‘ Power-cycle the PSC command name (default from rgts xml)

‘ change_CIM_side_cmd ‘ Switch CIM side command name (default from rgts xml)

Data Entry To Enable Test
Generation From Template

XML Test Plan

Data Model Based on IEEE Standards

adopted by the Institute of Electrical and Electronics
Engineers (IEEE) as a standard (IEEE Std 1671-2010)

Examples: Browsing Requirements

Autonomous Rule System Requirements Overview

Requirements

Test Plans

Test Results

Requirement AUT-3 Monitor Battery Temp

Requirement ID

Title

ID

AUT-3

AUT-1

Detect Loss of Telemetry

Name

Maonitor Battery Temp

AUT-2

Detect Invalid Telemetry

Categories

Device Health, Thermal Maonitaring

AUT-3

Monitor Battery Temp

Parents

5C-1

AUT-4

Monitor Battery State of Charge

Rationale

Protects against a potential PSC control fault that could
Cause excessive battery temperature.

AUT-5

Detect Critically Low State of Charge

Details

AUT-6

Battery Heater Power On

AUT-7

Battery Heater Power Off

Text

Autonomy shall perform the following tiered response if the
battery temperature is above a pre-defined limit: &) 5oft-Resat the
PSC, B) Power-cycle the PSC, C) Switch the PSC (via a CIM side
switch).

Condition

Battery temp > 160

Subject

Autonomous system

Tiered
Action(s)

Soft-reset the PSC, Power-cycle the PSC, Switch the PSC (via a
CIM side switch)

Object

PSC

Limit Value

160

Constraint

N/A

Examples: Test Plan (Flowchaurt)

Test Runner - Active Requirement: AUT - 3
File New Run Help

Requirements Test Plans Test Results
Flowchart

Step 1 Step 2 Step 3

Initialize Tier 1 Response
Set Mominal

Spacecraft Systemn State

—

Step 4 Step 5

Tier 2 Response Tier 3 Response

Unrecovered
Function

Verify Tier 3 response ~ © Cycle Tiered Response

Inject Fault Inject Fault Inject Fault

Verify Tier 1 response ' Verify Tier 2 response !
Verify autonomy takes

) : : : Verify rule disabled
no action Determine Success Determine Success Determine Success

Back to Step Details

Test Runner - Active Requirement: AUT - 3
File New Run Help

Requirements Test Plans Test Results Step 2: Tier 1 Response

Sequence

Inject fault W
Step ID Step Name 1

Step 1 | Initialize @

Step 2 | Tier 1 Response

Verify tier 1 autonomy response ¥/

Step 3 | Tier 2 Response

1. | Wait 7 seconds

Step 4 | Tier 3 Response

2-
Step 5 | Unrecovered Function

3.

U

Success

View Flowchart Add Test Plan Step

Set battery temp = 159, every 1 second

Wait 15 seconds

Verify commands =

Examples: Test Results

Test Runner - Active Requirement: AUT - 3
File New Run Help

Requirements Test Plans Test Results Initial autonomous rule test Results

Date & Time Test Plan Name Outcome View Flowchart Export Test Results

i System: Autonomous Rule System
8/11/2016 — 9:34 AM | Initial autonomous rule test | Failed 3¢ Date: Aug. 11, 2016 — 9:34 AITI:-.-’I

Personnel
Operator: Smith Johnson, sysop@company.com, 235-234-4321
Quality Assurance: Jane Smith, ga@company.com, 235-234-4321

Test Plan: Initial autonomous rule test

Description: Performs macro command tests to verify that appropriate
commands are being sent when the AUT rule is triggered.

Outcome: Failed

+ Step 1: Initialize
+" Step 2: Tier 1 Response
+ Step 3: Tier 2 Response
¥ Step 4: Tier 3 Response
" 1. Inject Fault
XK 2. Verify tier 3 autonomy response
+" 1. Wait 7 seconds

Advantages of this Method

Start test driven development early
Express autonomy requirements in terms of expected behavior
Support pre-integration testing

Make integration testing time more productive — no logic errors in
software

During integration, if software changes are required:
« Make the changes

 Re-run the pre-integration test to ensure no errors were
Inadvertently entered

« Resume integration testing

Innovations

 Represent requirements and link with intended behaviors for testing the
regquirements

 Formal data models for requirements, behavioral expectations, test
specifications, and test results

e Use of template to drive the elaboration of test specifications

 Integration of the testing mechanism with the operational environment
 Enabled by modular architecture w/ pub-sub communications scheme
 No change to the unit under test between testing and operations

« Paves the way for runtime checkout routines for selected apps (e.g., sensors for
deep-space science operations)

 Reporting of test results — similar appearance to specifications, still inked
to requirements

Next Steps

« Complete development of the ART tool and associated user
Interfaces

 |dentify how to support higher levels of integration testing

 |dentify how to support additional types of autonomy
reguirements

 Update overall documentation and documentation for all
requirement schemas (formal data models)

	�Supporting Tests of Autonomy: �Autonomy Requirements Tester �(ART)
	contributors
	Topics
	NASA SBIR
	Recent Survey
	ART Flow Diagram
	Publish / Subscribe Software
	Test Runner Software
	Slide Number 9
	Test Runner: Reads Test Spec, � Produces Test Results
	ART Flow Diagram
	Requirements in XML format
	Generate Test Plan From Requirements
	Template For Generating �Test Specification
	Data Entry To Enable Test �Generation From Template
	Examples: Browsing Requirements
	Examples: Test Plan (Flowchart)
	Examples: Test Plan (Details)
	Examples: Test Results
	Advantages of this Method
	Innovations
	Next Steps

