
INSIGHT

OCTOBER 2O24
VOLUME 27 / ISSUE 5

A PUBLICATION OF THE INTERNATIONAL COUNCIL ON SYSTEMS ENGINEERING ®

Stakeholder Feature

State

Input/
Output

System

System of
AccessInterface

Functional
Role

Design
Component

Functional
Interaction

(Interaction)

Technical
Requirement

Statement

Design
Constraint
Statement

attribute

Stakeholder
Requirement

Statement
attribute attribute

attribute

attributeattribute

WB

WB
BB

BB

“A” Matrix
Couplings

“B” Matrix
Couplings

(logical system)

(physical system)

Stakeholder
World

Language

Technical
World

Language

High Level
Requirements

Detail Level
Requirements

High Level
Design

Design: Second (and Lower) Level System(s)

Stakeholder
Requirements
Definition

Requirements
Validation

Requirements
Analysis

Architectural
Design

Verification
(by Analysis &

Simulation)

Information Passing Through Processes Above

(S*Metamodel Summary)

Design: Top-Level System

Design: Second (and Lower) Level
System(s)

Realization: Second (and Lower) Level
System(s)

Realization: Top Level System

Component Level Design,
Acquisition, Fabrication

Organizational Project–
Enabling Processes

Agreement Processes

Technical Processes

Project Processes
Project

Planning

Life Cycle Model
Management

Human Resource
Management

Quality
Management

Acquisition

Supply

Infrastructure
Management

Project Portfolio
Management

Decision
Management

Information
Management

Risk
Management

Requirements
Analysis

Requirements
Validation

Verification
(by Test)

Simulation
Validation

Integration

Verification
(by Test)

Simulation
Validation

Integration

Disposal

Transition

MaintenanceOperation

Stakeholder
Requirements

Definition

Architectural
Design

Verification
(by Analysis &

Simulation

Requirements
Analysis

Requirements
Validation

Stakeholder
Requirements

Definition

Architectural
Design

Verification
(by Analysis &
Simulation)

Configuration
Management Measurement

Implementation

Project Assessment
and Control

Architecture View of ISO 15288 Life Cycle Management

Theoretical Foundations:
Impacts on Practice II

This Issue’s Feature:

Process versus information

Illustration credit: from the article
Maps or Itineraries? A Systems Engineering Insight
from INSIGHT_Aug2024_vol 27-4, Ancient Navigators
by William D. Schindel

Modular approach

No thesis required

30 credit hours

Earn your
M.S. in
Systems
Engineering
online today!

There’s a reason Missouri University of
Science and Technology leads the way
in online systems engineering graduate
education: We’ve been practicing and
perfecting the art of using technology
to engage and inspire for a long
time. With faculty who teach based
on real-world systems engineering
experience, a global network of
successful alumni and a curriculum
that sets standards across the industry,
Missouri S&T is the place for you.

online.mst.edu

https://online.mst.edu

IN
SID

E
TH

IS ISSU
E

O
CTO

B
ER

 2O
24

VOLUM
E 27/ ISSUE 5

3

Inside this issue

INSIGHT
OCTOBER 2O24 VOLUME 27/ ISSUE 5

A PUBLICATION OF THE INTERNATIONAL COUNCIL
ON SYSTEMS ENGINEERING

®

FROM THE EDITOR-IN-CHIEF 6

SPECIAL FEATURE 9

Innovation Ecosystem Dynamics, Value and Learning I: What Can Hamilton Tell Us? 9

Realizing the Promise of Digital Engineering: Planning, Implementing, and Evolving the Ecosystem 17

Requirements Statements Are Transfer Functions: An Insight from Model-Based
Systems Engineering 27

Feelings and Physics: Emotional, Psychological, and Other Soft Human Requirements,
by Model-Based Systems Engineering 35

Failure Analysis: Insights from Model-Based Systems Engineering 44

IN
SID

E
TH

IS ISSU
E

O
CTO

B
ER

 2O
24

VOLUM
E 27/ ISSUE 5

4

About This Publication

INFORMATION ABOUT INCOSE OVERVIEW
INCOSE’s membership extends to over 25,000 members and
CAB associates and more than 200 corporations, government
entities, and academic institutions. Its mission is to share,
promote, and advance the best of systems engineering from
across the globe for the benefit of humanity and the planet.
INCOSE charters chapters worldwide, includes a corporate
advisory board, and is led by elected officers and directors.

For more information, click here:
The International Council on Systems Engineering
(www.incose.org)
INSIGHT is the magazine of the International Council on
Systems Engineering. It is published six times per year and

features informative articles dedicated to advancing the state
of practice in systems engineering and to close the gap with
the state of the art. INSIGHT delivers practical information
on current hot topics, implementations, and best practices,
written in applications-driven style. There is an emphasis on
practical applications, tutorials, guides, and case studies that
result in successful outcomes. Explicitly identified opinion
pieces, book reviews, and technology roadmapping comple-
ment articles to stimulate advancing the state of practice.
INSIGHT is dedicated to advancing the INCOSE objectives
of impactful products and accelerating the transformation of
systems engineering to a model-based discipline.
Topics to be covered include resilient systems, model-based

systems engineering, commercial-driven transformational
systems engineering, natural systems, agile security, systems
of systems, and cyber-physical systems across disciplines
and domains of interest to the constituent groups in the
systems engineering community: industry, government,
and academia. Advances in practice often come from lateral
connections of information dissemination across disciplines
and domains. INSIGHT will track advances in the state of the
art with follow-up, practically written articles to more rapidly
disseminate knowledge to stimulate practice throughout the
community.

Editor-In-Chief William Miller
insight@incose.net +1 908-759-7110

Layout and Design Chuck Eng
chuck.eng@comcast.net

Member Services INCOSE Administrative Office
info@incose.net +1 858 541-1725

* PLEASE NOTE: If the links highlighted here do not take you to
those web sites, please copy and paste address in your browser.

Permission to reproduce Wiley journal Content:
Requests to reproduce material from John Wiley & Sons publications
are being handled through the RightsLink® automated permissions
service.

Simply follow the steps below to obtain permission via the
Rightslink® system:

• Locate the article you wish to reproduce on Wiley Online Library
(http://onlinelibrary.wiley.com)

• Click on the ‘Request Permissions’ link, under the ‹ ARTICLE
TOOLS › menu on the abstract page (also available from Table of
Contents or Search Results)

• Follow the online instructions and select your requirements from
the drop down options and click on ‘quick price’ to get a quote

• Create a RightsLink® account to complete your transaction (and
pay, where applicable)

• Read and accept our Terms and Conditions and download your
license

• For any technical queries please contact
customercare@copyright.com

• For further information and to view a Rightslink® demo please
visit www.wiley.com and select Rights and Permissions.

AUTHORS – If you wish to reuse your own article (or an amended
version of it) in a new publication of which you are the author, editor
or co-editor, prior permission is not required (with the usual acknowl-
edgements). However, a formal grant of license can be downloaded free
of charge from RightsLink if required.

Photocopying
Teaching institutions with a current paid subscription to the journal
may make multiple copies for teaching purposes without charge, pro-
vided such copies are not resold or copied. In all other cases, permission
should be obtained from a reproduction rights organisation (see below)
or directly from RightsLink®.

Copyright Licensing Agency (CLA)
Institutions based in the UK with a valid photocopying and/or digital
license with the Copyright Licensing Agency may copy excerpts from
Wiley books and journals under the terms of their license. For further
information go to CLA.

Copyright Clearance Center (CCC)
Institutions based in the US with a valid photocopying and/or digital
license with the Copyright Clearance Center may copy excerpts from
Wiley books and journals under the terms of their license, please go
to CCC.

Other Territories: Please contact your local reproduction rights
organisation. For further information please visit www.wiley.com and
select Rights and Permissions.
If you have any questions about the permitted uses of a specific article,
please contact us.

Permissions Department – UK
John Wiley & Sons Ltd.
The Atrium,
Southern Gate,
Chichester
West Sussex, PO19 8SQ
UK
Email: Permissions@wiley.com
Fax: 44 (0) 1243 770620
or

Permissions Department – US
John Wiley & Sons Inc.
111 River Street MS 4-02
Hoboken, NJ 07030-5774
USA
Email: Permissions@wiley.com
Fax: (201) 748-6008

PERMISSIONS

ARTICLE SUBMISSION insight@incose.net

 December 2024 – 1 September 2024
 February 2025 issue – 1 November 2024
 April 2025 issue – 2 January 2025

 June 2025 issue – 1 March 2025
 August 2025 issue – 1 May 2025
 October 2025 – 1 July 2025

Publication Schedule. INSIGHT is published six times per year. Issue and article submission
deadlines are as follows:

For further information on submissions and issue themes, visit the INCOSE website: www.incose.org

© 2024 Copyright Notice.
Unless otherwise noted, the entire contents are copyrighted by INCOSE
and may not be reproduced in whole or in part without written permission by
INCOSE. Permission is given for use of up to three paragraphs as long as full
credit is provided. The opinions expressed in INSIGHT are those of the authors
and advertisers and do not necessarily reflect the positions of the editorial staff
or the International Council on Systems Engineering. ISSN 2156-485X; (print)
ISSN 2156-4868 (online)

Officers
President: Ralf Hartmann, INCOSE Fellow, proSys
President-Elect: Michael Watson, Leidos Dynetics

Secretary: Stueti Gupta, BlueKei Solutions
Treasurer: Alice Squires, ESEP, University of Arkansas

Directors
Director for Academic Matters: Alejandro Salado, University

of Arizona
Director for Outreach: Bernardo Delicado, ESEP, Indra

Engineering & Technology
Director for Americas Sector: Renee Steinwand, ESEP, Booz

Allen Hamilton
Director for EMEA Sector: Sven-Olaf Schulze, CSEP,

Huennemeyer Consulting GmbH
Director for Asia-Oceania Sector: Quoc Do, ESEP, Frazer-

Nash Consultancy
Technical Director: Olivier Dessoude, Naval Group S.A.
Deputy Technical Director**: Tami Katz, Ball Aerospace

Services Director: Heidi Davidz, ESEP, ManTech
International Corporation

Director for Strategic Integration: David Long, INCOSE
Fellow, ESEP, Blue Holon

Director, Corporate Advisory Board: Michael Dahhlberg,
ESEP, KBR

Deputy Director, Corporate Advisory Board**: Robert
Bordley, General Motors Corporation

Executive Director**: Steve Records, INCOSE

** Non voting

IN
SID

E
TH

IS ISSU
E

O
CTO

B
ER

 2O
24

VOLUM
E 27/ ISSUE 5

5

Readership
INSIGHT reaches over 25,000 members and CAB associates and
uncounted employees and students of more than 130 CAB organizations
worldwide. Readership includes engineers, manufacturers/purchasers,
scientists, research and development professionals, presidents and
chief executive officers, students, and other professionals in systems
engineering.

Issuance Circulation
2024, Vol 27, 6 Issues 100% Paid

Contact us for Advertising and Corporate Sales Services
We have a complete range of advertising and publishing solutions
profes sionally managed within our global team. From traditional print-
based solutions to cutting-edge online technology the Wiley-Blackwell
corporate sales service is your connection to minds that matter. For
an overview of all our services please browse our site which is located
under the Resources section. Contact our corporate sales team today to
discuss the range of services available:

• Print advertising for non-US journals
• Email Table of Contents Sponsorship
• Reprints

• Supplement and sponsorship opportunities
• Books
• Custom Projects
• Online advertising

Click on the option below to email your enquiry to your nearest
office:

• Asia and Australia corporatesalesaustralia@wiley.com
• Europe, Middle East and Africa (EMEA)

corporatesaleseurope@wiley.com
• Japan corporatesalesjapan@wiley.com
• Korea corporatesaleskorea@wiley.com

USA (also Canada, and South/Central America):
• Healthcare Advertising corporatesalesusa@wiley.com
• Science Advertising Ads_sciences@wiley.com
• Reprints Commercialreprints@wiley.com
• Supplements, Sponsorship, Books and Custom Projects

busdev@wiley.com

Or please contact: Marcom@incose.net

CONTACT
Questions or comments concerning:

Submissions, Editorial Policy, or Publication Management
Please contact: William Miller, Editor-in-Chief
insight@incose.net

Advertising — please contact:
Marcom@incose.net

Member Services – please contact: info@incose.org

ADVERTISER INDEX Octoberber Volume 27-5
Missouri University Science & Technology inside front cover
Weber State Univ. Master of Science in Systems Engineering page 7
2025 INCOSE International Workshop – Seville, SPAIN page 8
Systems Engineering – Call for Papers page 50
35th Annual INCOSE International Symp – Ottawa back inside cover
Catia Magic – Dessault Systemes back cover

ADVERTISE

CORPORATE ADVISORY BOARD — MEMBER COMPANIES

Aerospace Corporation, The
Airbus
AM General LLC
Analog Devices, Inc.
Arcfield
Australian National University
AVIAGE SYSTEMS
Aviation Industry Corporation of China, LTD
BAE Systems
Bechtel
Becton Dickinson
Belcan Engineering Group LLC
BMT Canada
Boeing Company, The
Booz Allen Hamilton Inc.
Boston Scientific Corporation
C.S. Draper Laboratory, Inc.
California State University Dominguez Hills
Carnegie Mellon Univ. Software Engineering Institute
Change Vision, Inc.
Colorado State Univ. Systems Engineering Programs
Cornell University
Cranfield University
Cubic Corporation
Cummins, Inc.
Cybernet MBSE Co, Ltd
Dassault Systèmes
Defense Acquisition University
Deloitte Consulting, LLC
Denso Create Inc
DENTSU SOKEN INC
Drexel University
Eaton
Eindhoven University of Technology
EMBRAER
FAMU-FSU College of Engineering
Federal Aviation Administration (U.S.)
Ford Motor Company
GE Aerospace
General Dynamics
General Motors
George Mason University
Georgia Institute of Technology
Hitachi Energy
IBM
Idaho National Laboratory
ISAE - Supaero
ISDEFE

IVECO Group
Jama Software
Jet Propulsion Laboratory
John Deere & Company
Johns Hopkins University
KBR, Inc.
KEIO University
L3Harris Technologies
Lawrence Livermore National Laboratory
Leidos
LEONARDO
Lockheed Martin Corporation
Los Alamos National Laboratory
Loyola Marymount University
Magna
ManTech International Corporation
Marquette University
Massachusetts Institute of Technology
MBDA (UK) Ltd
Medtronic
MetaTech Consulting Inc.
Missouri University of Science & Technology
MITRE Corporation, The
Mitsubishi Electric Corporation
Mitsubishi Heavy Industries, Ltd
Modern Technology Solutions Inc
National Aeronautics and Space Administration (NASA)
National Reconnaissance Office (NRO)
National Security Agency Enterprise Systems
Naval Postgraduate School
Nissan Motor Co, Ltd
Northrop Grumman Corporation
Pacific Northwest National Laboratory
Pennsylvania State University
Petronas International Corporation Limited
Prime Solutions Group, Inc
Project Performance International (PPI)
Purdue University
QRA Corporation
Rolls-Royce
RTX
Saab AB
SAIC
Sandia National Laboratories
Saudi Railway Company
SENSEONICS
Shanghai Formal-Tech Information Technology Co., Ltd
Shell

Siemens
Sierra Nevada Corporation
Singapore Institute of Technology
Southern Methodist University
SPEC Innovations
Stevens Institute of Technology
Strategic Technical Services LLC
Swedish Defence Materiel Administration (FMV)
Systems Planning and Analysis
Taiwan Space Agency
Tata Consultancy Services
Thales
The George Washington University
The University of Arizona
The University of Utah
Torch Technologies
TOSHIBA Corporation
Trane Technologies
Tsinghua University
UK MoD
Universidade Federal De Minas Gerais
University of Alabama in Huntsville
University of Arkansas
University of California San Diego
University of Connecticut
University Of Lagos
University of Maryland
University of Maryland Global Campus
University of Maryland, Baltimore County
University of Michigan, Ann Arbor
University Of Nairobi
University of New South Wales, The, Canberra
University of South Alabama
University of Southern California
University of Texas at El Paso (UTEP)
US Department of Defense
Veoneer US Safety Systems, LLC
Virginia Tech
Volvo Cars Corporation
Volvo Construction Equipment
Wabtec Corporation
Weber State University
Wichita State University College of Engineering
Woodward Inc
Worcester Polytechnic Institute (WPI)
Zuken, Inc

O
CTO

B
ER

 2O
24

VOLUM
E 27/ ISSUE 5

6

William Miller, insight@incose.net

FROM THE
EDITOR-IN-CHIEF

FR
O

M
 TH

E
ED

ITO
R

-IN
-CH

IEF

We are pleased to publish the
October 2024 INSIGHT

issue published cooperative-
ly with John Wiley & Sons

as the systems engineering practitioners’
magazine. The INSIGHT mission is to pro-
vide informative articles on advancing the
practice of systems engineering as the state-
of-the-art advances as evidenced in Systems
Engineering, the Journal of INCOSE also
published by Wiley, as well as papers
presented at symposia and conferences
by INCOSE and in the broader systems
community.

The focus of this October issue
of INSIGHT continues the systems
engineering theoretical foundations and
its impacts on practice in the August 2024
INSIGHT featuring the contributions of
MBSE Patterns Working Group chair and
INCOSE fellow William (Bill) Schindel.
Bill was asked by Sandy Friedenthal and
Heinz Stoewer beginning in 2019 to
provide materials from his past work on
theoretical foundations for the preparation
of the forthcoming Systems Engineering
Vision 2035 led by Sandy, Heinz, and
Garry Roedler published in 2021 (www.
incose.org/publications/se-vision-2035).
Bill’s contributions towards the Vision
2035 were reviewed by Tom McDermott,
Chris Paredis, David Rousseau, Jon Wade,
and Michael Watson (current INCOSE
president-elect).

The Vision 2035 was preceded by the
Systems Engineering Vision 2020 (2007) and
A World in Motion: Systems Engineering
Vision 2025 (2014). In particular, the Vision
2025 called for stronger foundations noting
that systems engineering practice is only

weakly connected to the underlying theoret-
ical foundation, and educational programs
focus on practice with little emphasis on
underlying theory. The Vision 2025 objec-
tive was that the theoretical foundation of
systems engineering encompasses not only
mathematics, physical sciences, and systems
science, but also human and social sciences.
This foundational theory is taught as a nor-
mal part of systems engineering curricula,
and it directly supports systems engineering
methods and standards. Understanding the
foundation enables the systems engineer to
evaluate and select from an expanded and
robust toolkit, the right tool for the job.

Bill asserts “that much of that foundation
is closer than realized, not always requiring
discovery ‘from scratch.’ There are well-
established foundations of STEM and
other disciplines, discovered and highly
successful during three centuries of the
transformation of human life. These
foundations await a wider awareness and
exploitation by the systems community,
providing a powerful starting point for
what will follow. The foundations are both
quantitative and qualitative, and richly
endowed with humanistic aspects.” Bill
summarizes three phenomenon-based
elements of that foundation, providing
already known starting points: the
systems phenomenon, the value selection
phenomenon, and the model trust by
groups phenomenon.” All these elements
have significant implications for systems
engineering practitioners, educators, and
researchers. We thank Bill for his sustained
contributions in the MBSE Patterns
Working Group to realize the Systems
Engineering Vision 2035.

We lead the October INSIGHT with Bill
Schindel’s refreshing our understanding of
the contributions to systems engineering
by Ireland’s Sir William Rowan Hamil-
ton (1805-1865): “Innovation Ecosystem
Dynamics: Value and Learning I: What
Can Hamilton Tell Us?” Schindel states
that Hamilton’s profound contributions to
science, technology, engineering, and math
(STEM) deserve greater systems com-
munity attention. Supporting theory and
practice, they remain relevant to the future
of systems engineering (FuSE) initiative
to realize the Systems Engineering Vision
2035. Key aspects apply to systems of all
types, including socio-technical and infor-
mation systems. Hamilton abstracted the
energy-like generator of dynamics for all
systems, while also generalizing momen-
tum. Applied to the INCOSE innovation
ecosystem pattern as dynamics of learning,
development, and life cycle management,
this suggests an architecture for integration
of the digital thread and machine learn-
ing in innovation enterprises, along with
foundations of systems engineering as a
dynamical system.

“Realizing the Promise of Digital En-
gineering: Planning, Implementing, and
Evolving the Ecosystem” elaborates on
the benefits of digital engineering beyond
implementing digital technologies. An
ecosystem for innovation is a system of
systems, only partly engineered, subject to
risks and challenges of evolving socio-tech-
nical systems. This article summarizes an
aid to planning, analyzing, implementing,
and improving innovation ecosystems.
Represented as a configurable model-based
reference pattern used by collaborating

O
CTO

B
ER

 2O
24

VOLUM
E 27/ ISSUE 5

7

FR
O

M
 TH

E
ED

ITO
R

-IN
-CH

IEF

INCOSE working groups, it was initially
applied in targeted INCOSE case studies,
and subsequently elaborated and applied to
diverse commercial and defense ecosys-
tems. Explicating the recurrent theme of
consistency management underlying all
historical engineering, it is revealing of
digital engineering’s special promise, and
enhances understanding of historical as
well as future engineering and life cycle
management. It includes preparation of
human and technical resources to effective-
ly consume and exploit digital information
assets, not just create them, capability en-
hancements over incremental release trains,
and evolutionary steering using feedback
and group learning.

“Requirements Statements Are Transfer
Functions: An Insight from Model-Based
Systems Engineering” builds on traditional
systems engineering paying attention to
careful composition of prose requirements
statements. Even so, prose appears less
than what is needed to advance the art of
systems engineering into a theoretically
based engineering discipline compara-
ble to electrical, mechanical, or chemical
engineering. Prose requirements are subject
to peoples’ different impressions of their
meaning. Model-based systems engineer-
ing might suggest the demise of prose
requirements, but we argue otherwise. This
article shows how prose requirements can
be productively embedded in and a valued
formal part of requirements models. This
leads to the practice-impacting insight that
requirements statements can be non-linear
extensions of linear transfer functions,
shows how their ambiguity can be further
reduced using ordinary language, how
their completeness or overlap more easily
audited, and how they can be “understood”
more completely by engineering tools.

“Feelings and Physics: Emotional,
Psychological, and Other Soft Human
Requirements, by Model-Based Systems
Engineering” builds on traditional
engineering encouraging requirements
statements that are objective, testable,
quantitative, atomic descriptions of system
technical behavior. But what about “soft”
requirements? When products deliver
psychologically or emotionally based
human experiences, subjective descriptions
may frustrate engineers. This challenge is
important for products appealing to senses
of style, enjoyment, fulfillment, stimulation,
power, safety, awareness, comfort, or
similar emotional or psychological
factors. Automobiles, buildings, consumer
products, packaging, graphic user
interfaces, airline passenger compartments
and flight decks, and hospital equipment
provide typical examples. This article shows
how model-based systems engineering
helps solve three related problems: (1)
integrating models of “soft” human
experience with hard technical product
requirements, (2) describing how to score
traditional “hard” technology products
in terms of “fuzzier” business and
competitive marketplace issues, and (3)
coordinating marketing communication
and promotion with the design process.
The resulting framework integrates the
diverse perspectives of engineers, stylists,
industrial designers, human factors experts,
and marketing professionals.

“Failure Analysis: Insights from Mod-
el-Based Systems Engineering” builds on
system failure analyses such as failure mode
and effects analysis (FMEA) as structured,
well-documented, and supported by tools.
Failure analyses can be perceived as (1) too
labor intensive to encourage engagement,
(2) somewhat arbitrary in identifying

issues, (3) overly sensitive to the skills and
background of the performing team, and
(4) not building enough confidence of fully
identifying the risks of system failure. This
article shows how MBSE can answer these
challenges by deeper and novel integra-
tion with requirements and design. Just as
MBSE powered the requirements discovery
process past its earlier, more subjective
performance, so to can MBSE accelerate
understanding and performance of failure
risk analysis — as a discipline deeply con-
nected within systems engineering.

We hope you find INSIGHT, the prac-
titioners’ magazine for systems engineers,
informative and relevant. Feedback from
readers is critical to INSIGHT’s quali-
ty. We encourage letters to the editor at
insight@incose.net. Please include “letter to
the editor” in the subject line. INSIGHT
also continues to solicit special features,
standalone articles, book reviews, and
op-eds. For information about INSIGHT,
including upcoming issues, see https://
www.incose.org/products-and-publications/
periodicals#INSIGHT. For information about
sponsoring INSIGHT, please contact the
INCOSE marketing and communications
director at marcom@incose.net .

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

8

https://www.incose.org/iw2025

https://www.incose.org/iw2025

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

9

INSIGHT Special Feature

INTRODUCTION

 ABSTRACT
Held in Dublin, Ireland, IS2024 invites us to refresh understanding of contributions to systems engineering by Ireland’s greatest
mathematician— Sir William Rowan Hamilton (1805–1865), professor of astronomy at Trinity College Dublin and royal astronomer
of Ireland. His profound contributions to science, technology, engineering, and math (STEM) deserve greater systems community
attention. Supporting theory and practice, they intersect foundations and applications streams of INCOSE’s future of systems
engineering (FuSE) program. Strikingly, key aspects apply to systems of all types, including socio-technical and information
systems. Hamilton abstracted the energy-like generator of dynamics for all systems, while also generalizing momentum. Applied
to the INCOSE innovation ecosystem pattern as dynamics of learning, development, and life cycle management, this suggests
an architecture for integration of the digital thread and machine learning in innovation enterprises, along with foundations of
systems engineering as a dynamical system.

Innovation Ecosystem
Dynamics, Value and
Learning I: What Can
Hamilton Tell Us?

 KEYWORDS: Digital thread; Hamiltonian; Hamilton’s principle; energy; momentum; machine learning; FuSE; future of systems
engineering; foundations; organizational and social systems modeling.

William D. Schindel, schindel@ictt.com
Copyright © 2024 by William D. Schindel. Permission granted to INCOSE to publish and use.

This paper highlights contributions
William Rowan Hamilton made
to the theoretical foundations
of scientific and engineering

disciplines, and some current questions
to which they could apply. Hamilton’s
mathematically based patterns describe
the phenomena of mechanics, electrical
science, thermodynamics and subsequent
disciplines, supporting the foundations of
today’s science, technology, engineering,
and math (STEM). However, in the general
setting of systems engineering, over-lim-
iting assumptions about applicability
sometimes arise. This paper briefly recalls
aspects of Hamilton’s contributions, and
why current assumptions may be unnec-
essarily limiting practitioners. Prominent
examples of current interest are noted—
information systems and socio-technical

systems of innovation. These suggest archi-
tecture-level strategies for integrating the
digital thread and machine learning into
the innovation enterprise. This is described
in the perspective of the INCOSE innova-
tion ecosystem pattern, which provides a
general descriptive reference representation
of enterprise or supply chain engineering
and life cycle management processes, as
a system of systems in its own right. This
reference pattern interprets “innovation”
very broadly, as including the entire life
cycle of all products and systems, whether
they are effective or not, providing a neutral
framework for analysis use.

Millennia of observation and thought
about natural phenomena were punctuated
by a much shorter revolution. In less than
300 years, Newton, Lagrange, Gauss, Euler,
Jacobi, Hamilton, Gibbs, and many others

synthesized, extended, refined, and applied
conceptual and mathematical frameworks
that supported the dramatic acceleration of
STEM. What followed rapidly changed the
quality, length, and possibilities of human
life.

Those mathematical frameworks provid-
ed conceptual and quantitative models to
describe, predict, or explain many aspects
of the modeled world, deterministic and
probabilistic. Hamilton’s contributions
were recognized by later thought leaders
as remarkably universal across phenomena
of mechanics, electrical science, and other
fronts. Max Planck (1858-1947) noted that
“The chief law of physics, the pinnacle of
the whole system is, in my opinion, the
principle of least action”— Hamilton’s prin-
ciple (Planck 1925).

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

10

CONTEMPORARY INNOVATION ECOSYSTEM
QUESTIONS

Systems engineering today frequently
involves (1) information systems and (2)
socio-technical systems. It is increas-
ingly common for engineered products
to directly involve these domains, and
even more common for the engineering
enterprise itself to depend upon them. Even
though they were not the main interest in
Hamilton’s time, today these domains have
rapidly growing significance for systems
engineers.

Related engineering project questions
that Hamilton’s contributions may help us
answer include:
A. Project and program planning: What

are predicable efforts, times, and costs
of performing innovation and life
cycle management? What are related
uncertainties (and consequent risks) in
those predictions? These are questions
addressed historically by empirical
models such as COSYSMO (Valerdi,
Boehm, and Reifer 2003) and more
recently asked by INCOSE FuSE foun-
dations efforts (de Weck 2023). They
are supported by basic shared under-
standings of enterprise processes such
as ISO (2023) and Walden et al. (2023).
When projects involve complications of
organization (such as supply chains or
consortia), problems with communi-
cation, incentives, shared understand-
ings, or cultures, their success may be
doomed before execution begins.

B. Project execution management: As
projects are performed (and encounter
real-world perturbations only partly
predictable), what are the means of
preparing, monitoring, and directing
them for optimum outcome—including
decision-making in particular? During
complex multi-enterprise development
projects, how can we detect and act
on systemic project uncertainties and
instabilities threatening success? These
are questions addressed historically by
disciplines such as capabilities assess-
ment (SEI 2010), project management
in general (Rebentisch 2017), agile
methods in particular (Dove 2001), and
emerging aspects of digital engineering
(Schindel 2022).

C. Project learning and its recurrent
application: What are means and
effects of accumulating new experi-
ence in items (A) and (B) above, and
effectively distilling, managing trust in,
and applying knowledge and competen-
cy in future projects? This question is
addressed historically by technical read-
iness levels (Mihaly 2017), capability
maturity models (SEI 2010), knowledge
management (Trees, McCulloch, and

Witt 2021), application of recurrent
patterns (Alexander 1977), Gamma et
al. 1994, Cloutier 2008, and Schindel
2022), and product line engineering
(Clements and Northrop 2002 and ISO
2021). It includes the emerging subject
of machine learning (LeCun, Bengio,
and Hinton 2015).

D. Information and information sys-
tem roles in items (A), (B), and (C)
above: A common thread through
the above are roles of information
and information systems—both those
using engineered information technol-
ogies and those performed by human
beings. What is the theoretical basis for
engineering the performance of these
subsystems as an integrated part of the
larger enterprise systems in which they
appear? How can systems engineering
connect these? These questions are
addressed historically by information
theory (Shannon 1948), enterprise
architecture (Foorthuis, Steenbergen,
Brinkkemper, and Bruls 2016), digital
engineering (Schindel 2022), the digital
thread (Cribb et al. 2023), and machine
learning (LeCun, Bengio, and Hinton
2015). More recently, US and Europe-
an governments are issuing executive
orders and regulations demanding new
levels of mastery of what is emerging.

What can Hamilton tell us about the
above questions?

A CHALLENGE TO CONTEMPORARY
ASSUMPTIONS

Hamilton’s framework may be most
familiar to engineers in mechanical, civil,
or electromagnetics settings. The systems
community may be assuming that Hamil-
ton’s mathematical contributions do not ad-
dress the socio-technical and information
system questions above in a practical way.

One sign of such an assumption in the
INCOSE and other systems communities
is a continued call and search for what are
perceived as missing theoretical foun-
dations for the science and engineering
of generalized systems (Friedenthal et
al. 2021). Disciplines in engineering and
sciences are concerned with phenomena
(e.g., mechanical, electrical, and chemical)
specific to those disciplines, leading to
impactful phenomena-specific patterns of
interactions described by laws specific to
those disciplines, often in mathematical
form. What about equivalent impactful
phenomena, theory, and mathematics for
systems in general?

A counterargument is that more atten-
tion should be given to already modeled
phenomena (from Hamilton and other
STEM pioneers) before spending too much

effort looking elsewhere (Schindel 2016
and 2020). Three such phenomena have
been suggested, playing parts in this paper:
(1) the system phenomenon, studied by
Hamilton; (2) the value selection phenom-
enon, fueling innovation force; and (3) the
group learning and trust phenomenon,
learning and applying patterns in the face
of uncertainties.

We do not suggest that unnoticed
phenomena and laws concerning informa-
tion systems and socio-technical systems
are not waiting for discovery. However, as
already noted by those who followed him,
Hamilton’s framework is not limited to only
mechanical or other specific phenomena.

INFORMAL SUMMARY OF THE SYSTEM
PERSPECTIVE INFORMED BY HAMILTON

Hamilton (1834) showed we can describe
energy (or at least an energy-like character-
istic function) of a system in a general and
mathematical way not restricted to only
some systems. Hamilton and those who
followed showed how deeply these concepts
follow from the most limited set of ideas
present in many systems—even seemingly
“soft” systems. Only the concepts of system
interaction and state are required to get
started. An informal argument proceeds as
follows:
A. Systems: Start with a system of any

type. By “system”, we mean a set of
interacting system components (Figure
1). By “interact” we mean they exchange
input-outputs, such as force, material,
energy, or information, resulting in
changes of state of the components.
By “state” of a component we mean
the condition of the component that
can modify its current input-output
behavior. Interaction thus changes state,
which in turn impacts interaction.

System

Component

Figure 1. The system perspective

B. Non-Deterministic and Discrete
Systems: This short and informal
discussion focuses on deterministic,
smoothly continuous systems. However,
it turns out that discrete Hamiltonian
systems have been heavily explored and
exploited, including providing the sym-
plectic Hamiltonian integrators found
in numerical simulation (Shibberu
1994, and Marsden and West 2001). For

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

11

non-deterministic cases, Hamiltonian mechanics provide the
foundations of the rich historical field of statistical mechanics
(Gibbs 1901 and Khinchin 1949), where state flows are replaced
by probability density flows. Probabilistic cases also re-enter
this story through machine learning and human behavior.

C. States: Have a way of representing the state of the system of
interest Q(t) = {q1, . . . , qn}, whose values change over time
at rate Q(t) = {q1, . . . , qn}, believed sufficient to characterize
observed interactions.

D. Characterizing System Level Behavior: Imagine now a
scalar-valued function of state and time, not yet defined until
below, contributed by Hamilton: H(Q, Q, t), intended to
characterize something about the system— we have not said
how yet.

E. Generalized Momentum: Hamilton contributed a “general-
ized momentum,” P(t) = {p1, . . . , pn}, intended to generalize
the idea of momentum in elementary physics — describing
ability to change Q. His generalized P is defined by the sensi-
tivity of H (H not otherwise defined yet) to Q(t):

(Notice that if H turns out to be something “like” energy, this
says that momentum is the sensitivity of energy to changes in
velocity, or that energy is required to change velocity, an intui-
tively reasonable generalization of mechanical systems.)

F. Defining the Hamiltonian: We want H to characterize the
system’s (Q, P) trajectories, and will do so here by tying them
to the local slopes of surface H. (See Figure 2.) First, the local
sensitivity of H with respect to pi at (Q, P) is to be equal to
the time rate of change of qi along the system state trajectory
passing through (Q, P):

Second, the local sensitivity of H with respect to qi at (Q, P)
is to be the negative of the time rate of change of pi along the
system state trajectory passing through (Q, P):

For intuition, notice that dividing both sides of Eq (2) by
both sides of Eq (3) shows that the instantaneous direction of
motion in the (q, p) plane of Figure 2 is the same as the ratio of
the local slopes of H in the q and p directions.

The above reasoning is important to intuitive motivation
and perspective on applying Hamiltonians. Hamilton
took the major step of providing Eq (1) as a definition of
generalized momentum, but defined H through a Legendre
transformation of a pre-existing Lagrangian, which we are
not assuming here, as we are making no assumption of pre-
existing energy concepts. A traditional textbook perspective
is to start with a mechanical system having defined kinetic
and potential energies and a Lagrangian, then applying a
Legendre transformation to yield a Hamiltonian that is based
conceptually and mathematically on mechanical energy
(Greenwood 1977, and Landau and Lifshitz 1976). In that
reasoning path, one then proves that Eq (2) and (3) follow.
Here, we instead define H as a function satisfying Eqs (1),
(2), and (3), for a collection of actual trajectories, whether
known or unknown. The mathematical question of existence
(not all systems are Hamiltonian) is informally addressed in
item H that follows.

(1)pi
∂H
∂qi

(2)qi
∂H
∂pi

(3)pi
∂H
∂qi

G. Hamilton’s Equations: Equations (2) and (3) are Hamilton’s
equations for the time evolution of the state of the system—
they are stated as equations of motion, describing trajectories
in terms of H. It may seem odd that we have arrived at the
equations of motion of a system, but we do not know what
specific kind of system it is yet! Intuitively, this is because we
started with a set of trajectories and invented a real-valued
function of state that characterizes those trajectories. See
Figure 2.

H. A “Story Experiment”: To ground ourselves in both intuitive
and practical framing of Hamilton’s equations, here is a related
“story” experiment that in recent years has been repeatedly
performed by multiple parties for different types of systems,
with variant approaches including Bertalan (2019), Greydanus
(2019), Toth and Rezende et al. (2020), Bhat (2020), and Chen
and Tao (2021):
i. Identify a specific system of interest, of any type, that you

can directly observe.
ii. As the system operates, observe and record a series of (Q,

Q, t) state trajectory tuple samples.
iii. Set up a machine learning (ML) system to “learn”

(discover) a functional surface H(Q, Q, t) that minimizes
across the sample space the following learning loss
functional:

iv. Two terms of Eq (4) show the “learned surface” attempts
to satisfy Hamilton’s Equations (2) and (3) for the
observed training data. The third term attempts to satisfy
(1) to discover generalized momentum. Thus, we can
“discover” a Hamiltonian surface from observational data.

The main point of this “story experiment” is not machine
learning—it is that Hamilton provided a conceptual function
H that characterizes the dynamic behavior of any system having
deterministic continuous state trajectories (see also B, F above),
by how the function H defines a “map” of state trajectories. H
is a characterization of the system, sometimes referred to as
a “generator” of the system’s dynamics. In any neighborhood
of the (Q, P) plane where we have a set of observations, those
observations can provide estimated time rates of change for Q
and P along the system’s state trajectory. From that, Hamilton’s
equations effectively define H quantitatively (up to an additive
constant) by telling us about the local slopes in the surface of
H at those points with respect to Q and P axes. See Figure 2(a).
Knowing nothing except the observed trajectories of the system,
we have created the surface H, which thereby characterizes that
system’s behavior (as trajectories in the Q, P plane).

pipi
∂H
∂Loss [H(Q, Q, t] = {(qi –)2 + (piqi

∂H
∂ qi

∂H
∂

+ –)2 + ()2 } (4)

Figure 2. Phase plane, Hamiltonian; config plane, Lagrangian—
for simple harmonic oscillator

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

12

I. The Variational Version: In Figure 2(a) a trajectory of the
system occurs in the (Q, P) phase plane. At a given point
on that trajectory, its direction in that plane is the tangent
vector { Q, P }. The gradient of H in the (Q, P) phase plane is
the vector { ∂H

∂Q , ∂H
∂P }, pointing in the direction of maximum

rate of change of the surface H(Q, P). In that plane, and
perpendicular to the gradient, is vector { ,– }, pointing in
the direction of zero rate of change (constancy) of the surface
H(Q, P). But based on Hamilton’s equations above, that is the
same as the trajectory tangent vector, { Q, P }. So, the trajectory
of the system moves in the direction of zero rate of change
of the surface H. H is thus invariant (constant, conserved) in
time along its trajectory, by the very definition of H. Figure
2(b) shows the Lagrangian surface L for the same system. It
expresses the variational statement of Hamilton’s principle
(Lanczos 1986), noted by Max Planck as remarkably broad.
Here, we see that it can apply to many systems for which we
can define states, including information systems and socio-
technical systems.

J. Holonomic? Conservative?: The proposed potential energy
concepts described in the next (application) section suggest
that the systems of interest described there for Hamiltonian
treatment are holonomic. In the main dynamics implied for
such information and socio-technical systems, H there appears
possibly conserved, whether or not it is called “energy.” See
also “dissipation” later below.

APPLICATION: SYSTEM STATES AND LEARNING IN AN INNOVATION
ECOSYSTEM

The above discusses the dynamic evolution of system state
variables Q(t). But what are the practical, real project state
variables that we care about for the enterprise information and
innovation project questions listed earlier above? The following
sections focus on some key state variables.

Ecosystem States Associated with Learning
The American Institute of Aeronautics and Astronautics

published AIAA’s Digital Thread Reference Model (Cribb et
al. 2023). The core of this AIAA reference model is based on
the INCOSE agile systems engineering life cycle management
(ASELCM) pattern (also known as the innovation ecosystem
pattern) (Schindel and Dove 2016). A central theme of these
reference models is the paradigm of “consistency management”
(Schindel 2021), which seeks to manage over the duration of
a project the reduction (ideally, to zero) of a set of managed
consistency “gaps” that are familiar in the history of engineering
and life cycle management projects, and which run through the
backbone processes of ISO (2023) and Walden et al. (2023). A few
prominent examples of the long list of consistency issues are:

 ■ Is the product design consistent with its requirements?
 ■ Are those requirements consistent with the mission and
stakeholder needs and priorities?

 ■ Are the emergent behaviors (both required and to be avoided)
in the engineered system consistent with the experience about
the underlying phenomena from which they emerge?

 ■ Are instances of the manufactured product consistent with the
design specifications?

 ■ Is the observed use of the product consistent with the product
mission and requirements?

 ■ Is performance of the deployed product consistent with the
specified requirements?

 ■ Is the environment of use of the product consistent with its
representation in the product mission and requirements?

 ■ Reducing these and other consistency gaps generates learned
information. Learning occurs over the course of projects,

much of it by humans, with some of it captured in artifacts
and some in tribal knowledge. In current and future projects,
more of this learning includes digital engineering agency that
is only partly human, with more learning captured in digital
artifacts.

The earlier list of project questions and the above consistency
management paradigm now help us see a project as two kinds of
mathematical boundary value problems:

 ■ Boundary Value Problem 1—The web of end-state consis-
tencies: Figure 3 illustrates the idea that a product design,
implemented, delivered and in service, reflects selection
pressures to minimize a set of consistency gaps. Visualize
equilibrium “relaxation” of the springs into their “trade off ”
positions during a project. Project time is not explicitly visible
in this view, although some of the consistencies it shows may
themselves be about project time.

Figure 3. Example consistency gap web of elastic springs—a
metaphor

“Consistency
Spring Gaps”,
Representing

Selection Forces
To Align Pairs

MaintenanceSimulation

Test

Competition

Program Boundary

Stakeholder
Needs Model

Stakeholder
Feedback

In Service
Performance

Requirements
Model

Manufacturing
& Distribution

Mission
Model

Design Model

 ■ Boundary Value Problem 2—The dynamics of state
evolution over the project duration: In contrast to that
end state view, Figure 4(a) illustrates the idea of what occurs
during a project, as a dynamic trajectory in high dimension
space, progressing over time. (One might visualize the
elastic network of Figure 3 “vibrating” and “relaxing” during
this time.) Analogous to a control system boundary value
problem, this perspective is more about questions concerning
the dynamic behavior of the project itself over time, as a
dynamical system.

4(a) Well behaved learning 4(b) Ringing, unstable

Figure 4. Example learning curve trajectories for a project

∂H
∂Q

∂H
∂P

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

13

We are not guaranteed that an actual
dynamic project system will be well-
behaved, converging to a deliverable good
outcome. It may “ring” or become unstable,
illustrated by Figure 4(b). Hamilton’s
contribution of “generalized momentum”
(discussed in the previous section)
ultimately figures into this. Figures 3 - 4
illustrate that, for a development and life
cycle management project, it is the states
of the managed consistency gaps that we
should especially care about as candidates
for the ecosystem state trajectory model
in the Hamilton perspective. Further, this
trajectory can be seen as the innovation
ecosystem learning the information
necessary to reduce inconsistencies to
deliverable levels.

This also prepares us to differentiate be-
tween what was already known at the start
of the project (a priori knowledge; “priors”),
versus what is learned during the project.
That differentiation is central to the practi-
cal integration and management of learned
formal patterns expressed as parameterized
models, along with more informal tribal
knowledge and heuristics. It is also central
to application of Bayesian inference (Jaynes,
2003), dramatically successful in communi-
cation and navigation systems.

The Level 1 (Figure 5) view of the
ASELCM pattern (Schindel and Dove 2016,
and Schindel 2022) incorporates that differ-
entiation, showing:

1. Life cycle management for System 1
acts based on what is already known
about System 1 and its environment;

2. Learning and knowledge manage-
ment for System 1, for learning new
information about System 1 and its
environment (whether human-based
learning, machine learning, or their
combination).

The ASELCM level 2 (Fig. 6) view shows:
1. the already learned deployed generic

model (pattern), more general than
needed for the specific project, hence
to be configured;

2. the configured specific model, specif-
ic for the project.

This reference model is not to say that
human enterprise project teams always
respond optimally, but rather to study the
forces to which they respond, by repre-
senting the perceived loss functions. These
can also be central to automated machine
learning algorithms.

Machine Learning in the Ecosystem
Public awareness of machine learning

progress has recently grown dramatically.
However, it results from 75 years of efforts
across dramatically improving methods,
along with orders of magnitude advance

Figure 5. ASELCM Pattern, Level 1 view, separating learning from application (adapted from Cribb (2023))

Figure 6. ASELCM pattern, level 2 view, information versus processes (adapted from
Cribb (2023))

Learnings

Feedback

Feedback

Observations

Observations

Environment 1

Environment 2

Environment 3

Ob
se

rv
at

io
ns

Observations

Observations

Learnings

Deployments

Deployments

Deployments

Learning & Knowledge
Management
for System 2 Life Cycle Management

for System 2

Life Cycle Management
for System 1

Life Cycle Domain System
(System 2)

Innovation Ecosystem
(System 2)

Learning & Knowledge
Management for System 1Learn

Learn

Pattern

Model

Learn

Apply

Apply

(ISO15288 processes are included
in all four Management roles)

Apply

System Life
Cycle Business

Process

Consistency
Management

Role

Metadata
(Descriptor)

Specific
Model

Trusted Model
Repository

Trusted Model Repository
and Content 2.2

LC Manager of
Target System System Life Cycle Management Project

Life Cycle Management for System 1

System 1
Stakeholder

AdvocatePr
oc

es
s

In
fo

rm
at

io
n

Deployed
Generic
Model

(Pattern)

Observed or
Generated

Datasets and
Artifacts

Level 1

Level 2

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

14

in hardware and training data resources
(LeCun, Bengio, and Hinton 2015).

Central to the contemporary
machine learning work is the concept
of minimization of some form of loss
function by various training algorithms.
Hopfield’s seminal PNAS paper of 1982
(Hopfield 1982), reawakening artificial
neural network interests, described
minimization of what he referred to as an
“energy” function. Inspired at the time
by properties of both biological neural
networks and physics of dynamical system
state flow patterns, Hopfield referred to
results as “isomorphic with an Ising model”
of physics.

In the more recent efforts (LeCunn
2006, 2021), “energy-based methods” have
become popular in machine learning.
The continued reference to “energy” in
this work stems from recognition of the
deep connection between probability
distributions governing the performance
of neural nets over large sample spaces and
the probability distributions of statistical
physics (for example, Gibbs-Boltzmann
distribution; Helmholtz free energy
distribution, and Hinton and Zemel 1993).

The State Variables
As illustrated above, the key “project

state variables” we want to manage effec-
tively (possibly with help from Hamilton)
include the consistency gap signals. These
contribute to the “potential energy” (Q
related) part of the Hamiltonian, as they
describe the “consistency gap field” that any
project seeks to minimize through selection
forces. However, these are not the only
state variables, as the metaphor of Figure
3 is replaced by inter-role selection force
interactions in Figure 6; its consistency
management roles and business process
roles contribute additional state variables
further characterizing the organization’s
processes, capabilities, and culture.

REAL PROJECTS: DECISION-MAKING AND THE
DIGITAL THREAD

Executing a project involves making
decisions. Some of these decisions are high-
visibility major choices by senior decision-
makers, at major stage gates. Many other
decisions occur across the teams on a day-
today basis. With the above consistency
management paradigm, we can think of
those decisions across the system life cycle
in an additional way: All program decisions
are reconciliations of inconsistencies
(Schindel 2023, 2024).

The digital thread reference model
(Cribb et al. 2023) represents roles of
detection of inconsistencies (by human
or automated agents) and reconciliation
of those inconsistencies (more likely by

human agents, potentially with future
automated assistance). Snapshot records
of the related information items form a
“consistency thread” precursor of the digital
thread of Figure 7.

In the innovation system dynamics, the
resulting consistency thread/digital thread
plays these major roles:

1. From a system dynamics perspective,
it is a trace of the project state trajec-
tory of Figs 3 and 4.

2. It is also the record of detected incon-
sistencies, and their reconciliations.

3. It exposes data for use in learning.
Whatever the project outcome, it
provides a learning database, for
human or machine learning.

4. It provides support for the use of past
learning.

Figures 5, 6, and 7 summarize aspects
of the architectural pattern for integration
of the enterprise, the digital thread, and
human and machine learning.

Are Classical Physics Models Practical for
Socio-Technical Systems?

The question of treating execution of
complex, risky innovation projects as a
mathematical problem of optimal control
was considered in Schindel (2017). However,
it is reasonable to question whether using
Hamilton’s mathematically based model is
practically plausible for complex, human-
performed sociotechnical systems such as
engineering and life cycle management.
Do differential equations really have
any practical place here? Similarly, is it

reasonable to expect that machine learning
can be productive in this human judgment-
intensive technical context?

That such questions would even be
seriously considered has recently become
more likely, based on advancements leading
to surprising demonstrations, such as
machine learning informed algorithms
passing legal bar and medical licensing
examinations or performing diagnoses.
How is it that a machine learning algorithm
based on Jacobian matrices of partial
derivatives and flowing with numbers has
led to such capabilities? While the answers
are emerging, clearly earlier intuition about
the limitations of mathematics of classical
mechanics in this space needs to be
recalibrated now, because of demonstrated
progress in performance enabled by better
algorithms, accessible training data, and
hardware capacities.

At the very least, this encourages
preparatory re-acquaintance with
Hamilton’s pattern. Even currently
human-intensive cases begin to illustrate
the enterprise architecture into which
advanced versions of the digital thread
can be integrated for enterprise learning.
The discrete time and statistically-based
versions of Hamilton’s pattern are likely
to be the most relevant for the innovation
ecosystem—but that is already the case for
much of contemporary engineering’s use of
Hamilton’s contributions.

If we hope to apply the methods of
optimal estimation and control in the
presence of randomness and uncertainty
(they have been very successful for simpler

INCOSE ASELCM Level 2
Reference Model

INCOSE ASELCM Level 3 Reference Model−
Consistency Thread Section

Consistency Thread

Consistency
Thread Head

Info Object
Dataset, or

Artifact

Object
Metadata
Wrapper

Learned
General Pattern

Component

Configured
Specific Model

Component

Observed
Empirical
Dataset

Generated
Artifact or

Dataset

Consistency
Metric

Consistency
Reconciliation

Managed
Consistency
Relationship

Consistency
Signature

Thread Atom

types of

types of

types of

System Life
Cycle Business

Process

Consistency
Management

Role

Metadata
(Descriptor)

Specific
Model

Trusted Model
Repository

Trusted Model Repository
and Content 2.2

LC Manager of
Target System System Life Cycle Management Project

Life Cycle Management for System 1

System 1
Stakeholder

AdvocatePr
oc

es
s

In
fo

rm
at

io
n

Deployed
Generic
Model

(Pattern)

Observed or
Generated

Datasets and
Artifacts

Figure 7. ASELCM pattern, consistency thread view (adapted from Cribb (2023))

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

15

engineered systems) to the system of
engineering and life cycle management
itself (Schindel 2017), then we first need
to have a theoretical representation of
that system. Likewise, if we want to have
a theoretical basis for understanding
the behavior of autonomous learning
and inference algorithms of artificial
intelligence (Cribb et al. 2023), then we
need sufficient representation of them
as dynamical systems. It appears that
Hamilton and those who followed have
provided us with such a representation, if
we reason in the right order.

Ecosystem Selection Forces, Dissipation,
Entropy, and Complexity

The above application discussion focused
on potential energy in the innovation eco-
system, but the selection forces provided by
other ecosystem roles (Schindel 2020, 2023,
2024) contribute kinetics to the dynamical
behavior of this system. For discussion in a
subsequent paper, certain aspects beckon:

1. Dissipation is about reversibility. As
learning proceeds in an innovation
ecosystem project, the potential
energy associated with consistency
gaps shrinks macroscopically at the
ecosystem level. If the ecosystem
is to conserve H, what (kinetic,
potential) would grow to offset that
shrinkage? An interesting candidate
is the project’s digital thread infor-
mation, captured during learning to
“explain” (and defend for posterity)
a learned product model’s validity as
a compression of empirical data. At
a more microscopic level, Landauer,
Bennet, Feynman, Toffoli, and others
have pursued the concepts of dissi-
pation-free information processing,
with the exception of dissipation by

erasure. (Hey 1996).
2. Hamiltonian systems also conserve

information entropy (Carcassi and
Aidala 2020). Using Kolmogorov
definition of complexity as size of
the generator (Li and Vitany 1997),
and recalling Shannon entropy’s
connection to encoded message size,
may imply a form of conservation of
complexity of the engineered system
in the ecosystem (de Weck 2023).
However, note that complexity of what
the ecosystem of Figure 5 must learn
in a project is not the full complexity
of the engineered System, but of the
“posterior” aspects of it — separating
“what do we already know?”

3. The learning subsystem of the
ecosystem can be Hamiltonian
(Ramacher 1992)

4. In the study of dynamical systems,
a long and rather complex history
of research dating to Hertz in
1894 has described the nature and
consequences of non-holonomic
constraints. (Bloch 2003, Rojo and
Bloch 2018, Flannery 2005, and Eden
1951).

CONCLUSIONS AND FUTURE WORK
This synthesis paper has:

1. Outlined some of the strategic questions
faced by contemporary innovation
ecosystem projects;

2. Provided an informal refresher on
how Hamilton’s framework can apply
to diverse systems, including socio-
technical and information systems,
and to the innovation ecosystem in
particular;

3. Shown that the key innovation
ecosystem state variables relevant for
Hamiltonian “potential” modeling
include the ASELCM pattern

consistency management “gaps” central
to the digital thread;

4. Noted that energy based learning
methods for machine learning
algorithms are already being used to
learn real system Hamiltonians as
well as being Hamiltonian modeled
themselves;

5. Shown that consistency management’s
needs for inconsistency detection
and reconciliation are candidates
for machine learning based aids to
traditional labor-intense roles;

6. Shown that this synthesis suggests
an innovation enterprise architecture
integrating the digital thread as well as
machine and human learning;

7. Laid a foundation for future momentum
kinetics and applications work utilizing
these approaches, as well as case study
work.

Related work continues to progress
in the INCOSE Patterns Working
Group, supporting the FuSE initiative,
and additional collaborations with
other working groups, societies, and
enterprises.

ACKNOWLEDGEMENTS
We have to thank W. R. Hamilton for

the core mathematical insights described
here — even if we must rediscover them.
Rick Dove led the INCOSE agile systems
engineering discovery project during which
the ASELCM pattern described here was
applied and advanced. When the ASELCM
pattern was used as the basis of the AIAA
aerospace digital thread reference model,
Woong Je Sung contributed the friendlier
but still correct diagrams of the original
SysML pattern shown here as Figures 5, 6,
and 7, for general audiences.

REFERENCES
 ■ Alexander, C. 1977. A Pattern Language: Towns/Buildings/

Construction. Oxford University Press.
 ■ Bertalan, T., et al. 2019. “On Learning Hamiltonian Systems

from Data.” Chaos 29: 121107-1-9. AIP Publishing.
 ■ Bhat, H., K. Ranka, and C. Isborn. 2020. “Machine Learning

a Molecular Hamiltonian for Predicting Electron Dynamics.”
Intl J of Dynamics and Control 8: 1089–1101.

 ■ Bloch, A. 2003. Nonholonomic Mechanics and Control. New
York, US-NY: Springer.

 ■ Carcassi, G., and C. Aidala. 2020. “Hamiltonian Mechanics is
Conservative of Information Entropy.” Studies in History and
Philosophy of Science, Part B: Studies in History and Philosophy
of Modern Physics, August, 60-71.

 ■ Chen, R., and M. Tao. 2021. “Data-Driven Prediction of
General Hamiltonian Dynamics via Learning Exactly-
Symplectic Maps.” 38th International Conference on Machine
Learning 139:17171727.

 ■ Clements, P. and L. Northrop. 2002. Software Product Lines:
Practices and Patterns. Addison-Wesley.

 ■ Cloutier, R. 2008. Applicability of Patterns to Architecting
Complex Systems: Making Implicit Knowledge Explicit.
Saarbrucken, DE: VDM Publishers.

 ■ Cribb, M., et al. 2023. “Digital Thread: Definition, Value, and
Reference Model.” American Institute of Aeronautics and
Astronautics.

 ■ de Weck, O. 2023. “The First Law of Systems Science:
Conservation of Complexity.” INCOSE 2023 International
Workshop, Los Angeles, US-CA.

 ■ Dove, R. 2001. Response Ability: The Language, Structure, and
Culture of the Agile Enterprise. Wiley. ISBN-10: 9780471350187.

 ■ Eden R. 1951. “The Hamiltonian Dynamics of Non-Holonom-
ic Systems.” Proc. of the Royal Society, 07 March 205 (1083).
DOI:https://doi.org/10.1098/rspa .

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

16

 ■ Flannery, M. 2005. “The Enigma of Nonholonomic
Constraints.” Am. J. Phys. 73 (3).

 ■ Foorthuis, R., M. Steenbergen, S. Brinkkemper, and W. Bruls.
2016. “A Theory Building Study of Enterprise Architecture
Practices and Benefits.” Information Systems Frontiers 18 (3):
541564. DOI: 10.1007/s10796-014-9542-1.

 ■ Friedenthal, S., et al. 2021. INCOSE Systems Engineering Vision
2035: Engineering Solutions for a Better World. International
Council on Systems Engineering, San Diego, US-CA.

 ■ Gamma, E., et al. 1994. Design Patterns: Elements of Reusable
Object-Oriented Software. AddisonWesley.

 ■ Gibbs, J. W. 1901. Elementary Principles of Statistical Mechan-
ics. Garden City, US-NY: Dover Publishers.

 ■ Greenwood, D. 1977. Classical Dynamics. Mineola, US-NY:
Dover Publications.

 ■ Greydanus, S., et al. 2019. “Hamiltonian Neural Networks.”
Proc. of NeurIPS 2019, Vancouver, CA-BC.

 ■ Hamilton, W. 1834. “On a General Method in Dynamics.” Phil.
Trans. of the Royal Society, Part II 1834: 247-308.

 ■ Hey, A., ed. 1996. Feynman and Computation: Exploring the
Limits of Computers. Cambridge, US-MA: Perseus.

 ■ Hinton, G., and R. Zemel. 1993. “Autoencoders, Minimum
Description Length and Helmholtz Free Energy.” Proc of
Advances in Neural Information Processing Systems 6 (NIPS
1993): 3-10.

 ■ Hopfield, J. 1982. “Neural Networks and Physical Systems with
Emergent Collective Computational Abilities.” Proc. Natl.
Acad. Sci. US 79: 2554-2558, Biophysics.

 ■ ISO. 2021. ISO/IEC 26580:2021, Software and Systems
Engineering: Methods and Tools for the Feature-Based
Approach to Software and Systems Product Line Engineering.
Technical Committee ISO/IEC JTC 1/SC 7. ICS: 35.080.

 ■ ISO. 2023. ISO/IEC/IEEE International Standard–Systems and
Software Engineering — System Life Cycle Processes. ISO/
IEC/IEEE 15288:2023, doi: 10.1109/IEEESTD.2023.7106435.

 ■ Jaynes, E. 2003. Probability Theory: The Logic of Science.
Cambridge University Press. ISBN-10: 0521592712.

 ■ Khinchin, A. 1949. Mathematical Foundations of Statistical
Mechanics. New York, US-NY: Dover Publishers.

 ■ Lanczos, C. 1986. The Variational Principles of Mechanics, 4th
Edition. New York, US-NY: Dover Publishers.

 ■ Landau, L, and E. Lifshitz. 1976. Mechanics, Third Edition.
London, GB: Butterworth Heinemann.

 ■ LeCun, Y. 2021. The Energy-Based Learning Model. Lecture
video of May 18. https://www.youtube.com/watch?v=4lthJd3D-
NTM.

 ■ LeCun, Y., Y. Bengio, and G. Hinton. 2015. “Deep Learning.”
Nature 521: 436-444, MacMillan.

 ■ LeCun, Y., et al. 2006. “A Tutorial on Energy-Based Learning.”
Predicting Structured Data, Cambridge, US-MA: MIT Press.

 ■ Li, M., and P. Vitany. 1997. An Introduction to Kolmogorov
Complexity and its Applications, Second Edition. Springer.

 ■ Marsden, J., and M. West. 2001. “Discrete Mechanics and
Variational Integrators.” Acta Numerica 357-514.

 ■ Mihaly, H. 2017. “From NASA to EU: The Evolution of the TRL
Scale in Public Sector Innovation.” The Innovation Journal 22:
1–23.

 ■ Planck, M. 1925. A Survey of Physics: A Collection of Lectures
and Essays, Transl. by R. Jones and D. H. Williams, Methuen
& Co., Ltd.

 ■ Ramacher, U. 1993. “Hamiltonian Dynamics of Neural
Networks.” Neural Networks 6: 547-557.

 ■ Rebentisch, E., editor. 2017. Integrating Program Management
and Systems Engineering: Methods, Tools, and Organizational

Systems for Improving Performance, Hoboken, US-NJ: Wiley.
ISBN-10:9781119258926.

 ■ Rojo, A., and A. Bloch. 2018. The History and Physics of
the Least Action Principle. New York, US-NY: Cambridge
University Press.

 ■ Schindel, W., and R. Dove. 2016. “Introduction to the Agile
Systems Engineering Life Cycle MBSE Pattern.” INCOSE 2016
International Symposium, Edinburgh, GB-SCT.

 ■ Schindel, W. 2016. “Got Phenomena? Science‐Based Disciplines
for Emerging Systems Challenges.” INCOSE 2016 International
Symposium, Edinburgh, GB-SCT 26 (1): 2256–2271.

 ■ ——— . 2017. “Innovation, Risk, Agility, and Learning, Viewed
as Optimal Control & Estimation.” INCOSE 2017 International
Symposium, Adelaide, AU.

 ■ ——— . 2020. SE Foundation Elements: Discussion Inputs to
INCOSE Vision 2035 Theoretical Foundations Section,V2.3.2a.
INCOSE Patterns Working Group. Download from: https://
www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:-
science_math_foundations_for_systems_and_systems_engineer-
ing—1_hr_awareness_v2.3.2a.pdf .

 ■ ——— . 2021. Consistency Management as an Integrating
Paradigm for Digital Life Cycle Management with Learning,
INCOSE MBSE Patterns Working Group, download from—
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mb-
se:patterns:aselcm_pattern_—_consistency_management_as_a_
digital_life_cycle_management_paradigm_v1.3.1.pdf .

 ■ ——— . 2022. “Realizing the Value Promise of Digital Engineer-
ing: Planning, Implementing, and Evolving the Ecosystem.”
INSIGHT Special Issue on Digital Engineering 25 (1).

 ■ ——— . 2023. All Decisions Across Life Cycles of Systems are
Reconciliations of Inconsistencies. Presentation to INCOSE
North Texas Chapter, Aug 08. Download from: https://www.
omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:in-
cose_north_texas_pgm_08.08.2023_v1.2.2.pdf .

 ■ ——— . 2024. “All Decisions are Reconciliations of Inconsisten-
cies: Preparing for the Digital Thread and Machine Learning.”
INCOSE 2024 International Symposium, Dublin, IE.

 ■ SEI. 2010. CMMI® for Development, Version 1.3 CMMI-
DEV, V1.3 CMMI Product Team Improving Processes for
Developing Better Products and Services. Technical Report

 ■ CMU/SEI-2010-TR-033 ESC-TR-2010-033, Carnegie Mellon
University Software Engineering Institute.

 ■ Shannon, C. 1948. “A Mathematical Theory of Communica-
tion.” Bell System Technical Journal 27 (3): 379–423.

 ■ Shibberu, Y. 1994. “Time-Discretization of Hamiltonian
Dynamical Systems.” Computers Math. Applic. 28 (10-12):
123-145.

 ■ Toth, P., D. Rezende, A, Jaegle, S. Racanière, A. Botev, and
I. Higgins. 2020. “Hamiltonian Generative Networks.” 2020
International Conference on Learning Representations, Addis
Ababa, ET.

 ■ Trees, L., M. McCulloch, and N. Witt. 2021. Knowledge
Management Trends: Survey Report. American Productivity &
Quality Center, Houston, US-TX.

 ■ Valerdi, R., B. Boehm, and D. Reifer. 2003. “COSYSMO: A
Constructive Systems Engineering Cost Model Coming of
Age.” INCOSE 13th Annual International Symposium, Crystal
City, US-VA.

 ■ Walden, D., et al., eds. 2023. Systems Engineering Handbook:
A Guide for System Life Cycle Processes and Activities, Fifth
Edition. International Council on Systems Engineering, San
Diego, US-CA: Wiley.

ABOUT THE AUTHOR
> continued on page 26

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

17

INTRODUCTION

 ABSTRACT
Gaining benefits of digital engineering is not only about implementing digital technologies. An ecosystem for innovation is a
system of systems in its own right, only partly engineered, subject to risks and challenges of evolving socio-technical systems. This
paper summarizes an aid to planning, analyzing, implementing, and improving innovation ecosystems. Represented as a config-
urable model-based reference pattern used by collaborating INCOSE working groups, it was initially applied in targeted INCOSE
case studies, and subsequently elaborated and applied to diverse commercial and defense ecosystems. Explicating the recurrent
theme of consistency management underlying all historical engineering, it is revealing of digital engineering’s special promise, and
enhances understanding of historical as well as future engineering and life cycle management. It includes preparation of human
and technical resources to effectively consume and exploit digital information assets, not just create them, capability enhance-
ments over incremental release trains, and evolutionary steering using feedback and group learning.

Realizing the Promise
of Digital Engineering:
Planning, Implementing,
and Evolving the
Ecosystem

 KEYWORDS: digital ecosystem; digital engineering; digital thread; digital twin; collaboration; MBSE

William D. Schindel, schindel@ictt.com
Copyright © 2022 by William D. Schindel. Permission granted to INCOSE to publish and use.

Many large-scale human
endeavors have grown up
and proliferated through
the evolutionary forces of

large-scale interactions and selection
processes; however, as interacting systems
of systems, they have not been consciously
human engineered in the traditional sense.
Human-performed systems of innovation
include interacting elements such as
competitive markets, scientific research,
engineering, production, distribution,
sustainment, and regulatory processes, and
other life cycle management familiar to
the systems engineering community (ISO
2015, INCOSE 2015). In the natural world,
systems of innovation provide a much
longer history for discovery and study than
the more recent human-performed cases

(Schindel 2013). For this paper’s interest
in human-performed cases for human
use, we define “innovation” as delivery of
significantly increased stakeholder value
(Schindel, Peffers, et al. 2011).

The term “ecosystem,” borrowed from the
life sciences, has become more frequently
applied to label the human-performed
case, out of recognition of the vast extent,
complexity, and dynamic evolution of the
human-performed cases. Systems engineers
less familiar with model-based systems
engineering (MBSE) details are encouraged
to view this approach as a systems view
of that ecosystem and systemic impacts
of information, not the details of models.
The descriptive backbone of this article is
the formal INCOSE Innovation Ecosystem
Reference Model, configurable across diverse

specific cases. (Since this paper is about that
formal reference model, terms which are
modeled class names from that reference
model are shown in title case as they appear
in the named model components.)

The engineering community is certainly
not without high value historical models
of at least portions of the human-
performed Innovation Ecosystem. The
above-referenced ISO standard and
INCOSE Handbook, the ubiquitous
“Vee” model, US Department of Defense
(DoD) and enterprise-specific models,
new model-based standard efforts to
describe the Model-Based Enterprise,
and others provide vital guidance. Out of
respect for those historical assets and the
importance of building upon them, they
are accommodated within and mate up

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

18

with the larger-scale Innovation Ecosystem
reference model’s configurations referenced
in this article.

Why is an ecosystem-level model need-
ed? Smaller scale models have served to
inform teams about what work needs to be
done, coordinate flows of information, plan
information systems, and other purposes.
Is there really a need for an ecosystem level
reference? Do our innovation ecosystems
work well enough, and do we understand
them well enough? Consider the following.

Ecosystem-level efforts and issues are
arising that challenge our group-level abil-
ities to effectively understand (individually
and together) and communicate about the
innovation ecosystem across life cycles, and
particularly so while that ecosystem itself
is evolving and the stakes are rising. We are
increasingly interested in how to under-
stand the basis of performance of the eco-
system as a whole (as in its timely delivery
of competitive solutions) through its system
components and their organization—for
performance improvement, robustness,
pathology, and security reasons. How do
we integrate across supply chains? Are
there other effective architectures besides
historical original equipment manufacturer
(OEM) and captive supplier relationships?
How can we improve the real effectiveness
of those or other combinations? Can we
even effectively communicate about this
subject without a shared neutral reference
model? What is the connection of the
engineering community’s interest with the
business management community’s interest
in “business ecosystems” (Jacobides 2017)?

Growth in conversations about “digital
engineering,” “digital twins” and “digital
threads,” all illustrate a growing need for
foundational insight to support the “buzz”
and to better connect to history even where
departures are needed. The Innovation Eco-
system Reference Model described in this
paper focuses on such a set of ecosystem
issues. Following a brief introduction to the
structure of the reference model, this article
summarizes selected aspects which related
experience has shown provide import-
ant insight and understanding worthy of
increased attention:

1. Ecosystem-level capabilities’ connec-
tion to underlying interactions;

2. Connecting historically understood
business processes to evolving digital
infrastructure;

3. Consistency Management’s connec-
tion to realizing the promise of digital
engineering;

4. Effectiveness of distributed,
multi-level group learning across an
ecosystem;

5. Group trust in the credibility of
models;

6. Managing the proliferation of virtual
model diversity and instances;

7. Effective evolution of the ecosystem
itself—including implementation
challenges.

SELECTED ASPECTS OF THE INNOVATION
ECOSYSTEM PATTERN

The reference model was proposed in a
series of papers to describe adaptive pur-
pose-seeking innovation ecosystems (Bei-
hoff and Schindel 2011 and Schindel 2013).
It was then elaborated during a multi-year
INCOSE joint project of the Agile Systems
Engineering and MBSE Patterns Working
Groups to study agility across a range of
aerospace and defense programs by leading
enterprises (Schindel and Dove 2016; Dove,
Schindel, and Scrapper 2016; Dove and
Schindel 2017; Dove, Schindel, and Hartney
2017; Dove, Schindel, and Garlington 2018;
and Dove and Schindel 2019). Since that
time, it has been further elaborated by the
MBSE Patterns Working Group to study

issues listed in the introduction across other
enterprises, and migrated into a generic con-
figurable S*Pattern expressed in the Object
Management Group (OMG) System Model-
ing Language (SysML®). At the time of this
writing, it is also being applied as a reference
model in joint publication projects by AIAA,
INCOSE, and others to study a series of
Digital Twin and Digital Thread cases and
principles. This article summarizes aspects
of the reference pattern translated from its
more detailed OMG SysML version, using
accurate but less formal graphic renditions,
for ease of comprehension.

Reference Model Structure. Figures 1-3
informally summarize the formal model’s
logical architecture, Levels 0-2, the first
three decomposition levels of the logical
architecture.

By Level 2, these separate the roles
played by ecosystem information classes
from the business and technical processes
that produce and consume that informa-
tion. The blocks shown represent generic

Examples: Engineering Education, Engineering
Methods Owner, Engineering Tooling Architect, HR
Department, Engineering Procedures Author,
INCOSE, IEEE, ASME

Examples: Systems Engineering Department, Senior Electrical Engineer,
Design Review, Simulation Platform, Engineering Toolchains, Learning
Machines, Digital Threads, Digital Twins, Manufacturing Process, Service
Delivery Process, PLM system, Production MES.

• Examples: Atmosphere, weather,
runways

• Examples: COVID19 Pandemic,
Industry Funding, Job Market

• Examples: Landing Gear Requirements, Designs,
Schematics, MBSE Models, CFD Simulations, Part Prints,
Production Recipes, Assembly Diagrams, Raw Materials Lists,
Physics, Personal & Tribal Landing Gear Knowledge

• Examples: Enterprise Procedures, Job Descriptions,
Organization Charts, Policies, INCOSE Handbook, SEBoK,
Methodology Primers, Personal & Tribal Process Knowledge

• Examples: Aircraft, landing gear,
bearings, avionics.

EXAMPLES

System 3: Process definition, advancement System 2: Engineering, production, support, science

INCOSE ASELCM Level 1 Reference Model

System 1: Products

Figure 1. Level 0 Logical Architecture, Systems 1, 2, and 3

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

19

configurable logical roles (behaviors), not
specific methods, until they are configured.
Prominent in this decomposition are three
reference boundaries, for defined Systems
1, 2, and 3:

System 1—The Engineered System of
Interest: Viewed at any and all times in
its life cycle.
System 2—The Life Cycle Domain
System: The environment with which
the Engineered System interacts, across
its life cycle. This includes all Life Cycle
Management systems responsible for the
Engineered System (research, engineer-
ing, manufacturing, distribution, mar-
kets, operations, sustainment). System
2 is responsible to observe and learn
about System 1 and its environment, not
just engineer and deploy it. A model or
artifact describing System 1 is a subsys-
tem of System 2, which also includes
collaborating users of that information.
System 3—The Innovation Ecosys-
tem: Includes the system responsible

to plan, deploy, and evolve System 2,
responsible to observe and learn about
System 2 and its environment. Writing
and reading this article are System 3
activities, as are many other technical
society activities intended to improve the
future System 2’s of the world.

As an MBSE S*Pattern (a reusable,
configurable MBSE model), the reference
model has more components than just
logical architecture, including stakeholder
features (Figure 4) describing configurable
ecosystem capabilities, functional
interactions between functional roles,
interfaces and systems of access, allocations
to design components, attributes, and
other components, mapped into OMG
SysML. The details of the pattern methods
of representation are beyond the scope of
this ecosystem model article but described
further in Schindel and Peterson (2016),
INCOSE Patterns WG (2019b), and
Patterns WG (2020a).

1. Ecosystem-level capabilities’ connec-
tion to underlying interactions. Our
first concern for an Innovation Eco-
system is for its capabilities. Figure 4
summarizes the modeled Stakeholder
Features built into the configurable
reference model. For a given current or
planned ecosystem of interest, these are
configured by variably populating them
(multiple instances in some cases) or
not, and setting their attribute values,
similarly, to viewing the Innovation
Ecosystem as a configurable Product
Line Engineering model—but as a
product line of configurable ecosys-
tems. The resulting configured feature
model represents the overall capabilities
of an innovation ecosystem of inter-
est—whether past, current, or future,
whether favorable or unfavorable, for
analysis, planning, communication,
or other purposes. A series of these
configurations represents a planned or
real trajectory of ecosystem capabilities
evolution over time. Figure 4 shows
sample capabilities (features and their
attributes) from ISO15288 systems en-
gineering, along with agile engineering
capabilities, digital threads and twins,
and other capabilities at a stakeholder
level. The feature attributes (properties)
shown include Feature Primary Key
attributes whose configured values
invoke modeled population of specific
ecosystem interactions of the roles from
Figure 3, providing technical behaviors
delivering the configured capabilities.

2. Connecting historically understood
business processes to evolving digital
infrastructure. The System Life Cycle
Business Processes shown in the upper
sections of Figures 3 and 5 represent ei-
ther traditional or evolving business pro-
cesses from the ecosystem (supply chain
partners, enterprises, etc.) description of
existing or planned business processes
for research, engineering, production,
distribution, sustainment, and other life
cycle management processes. It is these
processes (typically some targeted subset
of them) that the Digital Engineering
enhancements shown in other blocks are
to advance, as discussed in the following
sections. The important point here is that
the advanced digital engineering roles
to be discussed next are by this means
connected to the more familiar existing,
traditional, or planned local reference
business process framework they are to
serve and enhance. We are now ready to
connect those business processes to the
digital engineering promise, using the
key insight of the Consistency Manage-
ment role introduced in Figure 3.

Learnings

Feedback

Feedback

Observations

Observations

Environment 1

Environment 2

Environment 3

Ob
se

rv
at

io
ns

Observations

Observations

Learnings

Deployments

Deployments

Deployments

Learning & Knowledge
Management
for System 2 Life Cycle Management

for System 2

Life Cycle Management
for System 1

Life Cycle Domain System
(System 2)

Innovation Ecosystem
(System 2)

Learning & Knowledge
Management for System 1Learn

Learn

Pattern

Model

Learn

Apply

Apply

(ISO15288 processes are included
in all four Management roles)

Apply

Figure 2. Level 1 Logical Architecture–separates learning from applying what is learned

System Life
Cycle Business

Process

Consistency
Management

Role

Metadata
(Descriptor)

Specific
Model

Trusted Model
Repository

Trusted Model Repository
and Content 2.2

LC Manager of
Target System System Life Cycle Management Project

Life Cycle Management for System 1

System 1
Stakeholder

AdvocatePr
oc

es
s

In
fo

rm
at

io
n

Deployed
Generic
Model

(Pattern)

Observed or
Generated

Datasets and
Artifacts

Level 1

Level 2

Figure 3. Level 2 Logical Architecture—Process Roles versus Information Roles

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

20

Figure 5. Business processes of the ecosystem appear in the Configurable Reference Model

System Life
Cycle Business

Process

Consistency
Management

Role

Metadata
(Descriptor)

Specific
Model

Trusted Model
Repository

Trusted Model Repository
and Content 2.2

LC Manager of
Target System System Life Cycle Management Project

System 1
Stakeholder

AdvocatePr
oc

es
s

In
fo

rm
at

io
n

Deployed
Generic
Model

(Pattern)

Observed or
Generated

Datasets and
Artifacts

Level 1

Level 2

Excerpted or adapted from: (1) ISO15288 and INCOSE SE Handbook; (2) DoD5000 Wall Chart; (3) AIAA Sci Tech, 01.2020, J. Matakeyama;
(4) AIAA DEIC Digital Twin Subcommittee, 04.08.19 Donaldson, Flay, French, Matlik, Myer, Pond, Randjielovic

ISO15288 Life Cycle
“Vee” Model1

DoD 5000 Defense
Axquisition Life Cycle Model2

Boeing
“Diamond” Model3

Rolls-Royce
“O” Model4

Configurable to specific life cycle management models−

Figure 4. Configurable stakeholder features (Innovation Ecosystem System 2 capabilities)

VERIFICATION
CAPABILITY

DESIGN CAPABILITY

REQUIREMENTS
VERIFICATION CAPABILITY

PROJECT PLANNING
CAPABILITY

IMPLEMENTATION
CAPABILITY

INTEGRATION
CAPABILITY

VERIFICATION
CAPABILITY

Effectiveness

Effectiveness

Effectiveness

Effectiveness

Effectiveness

Requirements
Validation

System
Verification

System
Validation

REQUIREMENTS
DEFINITION CAPABILITY

Effectiveness

System
Requirements

Definition

Effectiveness
PBE Capability Type

Pattern-Based
Engineering

Capability

Effectiveness
MBE Capability Type

Model-Based
Engineering

Capability

INCREMENT IDENTITY
Increment Type

Ending Configuration
Starting Configuration

Starting Date
Completion Date
Completion Cost

Financial Risk
Schedule Risk

Performance Risk
Selection Status
Execution Status

Increment Value

Project Outcomes
Feature

CAPABILITY TYPE
Response Time

Response Effectiveness
Response Predictability

Response Scope

Response Cost

Proactive
Agility Feature

Mission Awareness
Status Awareness

Direction Awareness
Team Trust Level

Engagement Level

Team
Situational
Awareness

CAPABILITY TYPE
Response Time

Response Effectiveness
Response Predictability

Response Scope

Response Cost

Reactive
 Agility Feature

DOMAIN TYPE

Domain Specific
Knowledge

Verification
by Analysis &

Simulation

Architecture
Definition

CAPABILITY
Effectiveness

System Analysis
Feature

Effectiveness

Project Planning
Feature

RISK MANAGEMENT
CAPABILITY

Effectiveness

Risk Management
Feature

DECISION MANAGEMENT
CAPABILITY

Decision
Management

Feature

Effectiveness
PAC CAPABILITY

Project Assessment
& Control Feature

SYSTEM OF INTEREST

Digital Twin
Feature

SYSTEM OF INTEREST

Digital Thread
Feature

Effectiveness

Verification by
Test

DESIGN CAPABILITY
Effectiveness

Design
Definition

System
Integration

Implementation

STAKEHOLDER
ANALYSIS CAPABILITY

Effectiveness

Stakeholder Needs
and Requirements

Definition

MISSION ANALYSIS
CAPABILITY

Effectiveness

Business or
Mission Analysis

STAKEHOLDER
ANALYSIS CAPABILITY

Effectiveness

Stakeholder Needs
and Requirements

Definition
VALIDATION
CAPABILITY

Effectiveness

Stakeholder
Satisfaction
Validation

Technical Process (ISO15288) and Development Features

Technical Management and AgilityFeatures

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

21

3. Consistency Management’s connec-
tion to realizing the promise of digital
engineering. The traditional systems
engineering “Vee diagram” in the
lower left of Figure 5, along with the
other adjacent US DoD and enterprise
models, all remind us that all engineer-
ing methods in one way or another
inherently manage a series of “gaps” into
acceptable “consistencies:”

 ■ Consistency of formally recorded
system requirements with stakeholder
needs

 ■ Consistency of system designs with
system requirements

 ■ Consistency of virtual simulations
with empirical measurements (model
verification, validation, and uncertainty
quantification VVUQ)

 ■ Consistency of system component
production with system design

 ■ Consistency of system performance
with system requirements

 ■ Consistency of system operation with
system requirements and design

 ■ Consistency of system sustainment with
system requirements and design

 ■ Consistencies of many aspects with
applicable technical standards,
regulation, and law

 ■ Consistencies of many aspects with
learned experiences, formal patterns
of requirements and design, physical
science, product line rules, architectural
frameworks, shared ontologies, domain
specific languages, and model semantics

 ■ Managed consistencies of the Digital
Thread and Digital Twin

 ■ Many other types of consistencies.

Nearly all of these were also required
consistencies in the traditional, more
“tolerant” human-performed ecosystems
lacking as much digital technology, even if
not recognized as so.

The Consistency Management Role in
Figure 3 represents the configurable set of
process roles responsible for consistency
management—whether performed by hu-
mans or automated, and whether performed
well or not. It is understandable that much of
this role has historically been performed by
humans, because of required skills, judge-
ment, experience, and information forms.

The digital engineering and modeling
community finds itself in frequent conver-
sations about a perceived need for a “single
source of truth” or “authority”, reflecting
frustrations with diverse and inconsis-
tent information about systems. Figure 6
reminds us this situation is not as simple as
might be assumed, showing the three main
sources of information in any ecosystem:

T1. What the stakeholders say (market
and sponsor truths);

T2. What experience says (accumulat-
ed, hard-won past discoveries; includes
physical science);
T3. What empirical observation says
(observation, measurement, experi-
ment).

The challenge is that these three sources
will frequently be inconsistent (disagree
with each other). The Figure 3 Consistency
Management Roles of engineering and
other life cycle management processes
historically must recognize (detect) those
inconsistencies and reconcile them. While
the resulting reconciliations may be con-
sidered “authoritative” or “single”, they are
short-lived.

The rise of interest in digital thread
and digital twin methods fits into this
consistency management perspective.
This is currently being applied in a series
of industry case studies by AIAA with
INCOSE support. In the case of the digital
twin, it reminds us of the importance of
(1) managing both consistency between
the virtual simulation model and the real
system it simulates, and (2) managing the
consistency of business processes and their
information with what the trusted digital
twin virtual model tells them. In the case
of the digital thread (Figure 7), the central
issue of the “thread” is managed consisten-
cy between a range of information objects
along that thread. (Even sources external

Figure 6. Roots of the consistency management challenge

INCOSE ASELCM Level 2
Reference Model

INCOSE ASELCM Level 3 Reference Model−
Consistency Thread Section

Consistency Thread

Consistency
Thread Head

Info Object
Dataset, or

Artifact

Object
Metadata
Wrapper

Learned
General Pattern

Component

Configured
Specific Model

Component

Observed
Empirical
Dataset

Generated
Artifact or

Dataset

Consistency
Metric

Consistency
Reconciliation

Managed
Consistency
Relationship

Consistency
Signature

Thread Atom

types of

types of

types of

System Life
Cycle Business

Process

Consistency
Management

Role

Metadata
(Descriptor)

Specific
Model

Trusted Model
Repository

Trusted Model Repository
and Content 2.2

LC Manager of
Target System System Life Cycle Management Project

Life Cycle Management for System 1

System 1
Stakeholder

AdvocatePr
oc

es
s

In
fo

rm
at

io
n

Deployed
Generic
Model

(Pattern)

Observed or
Generated

Datasets and
Artifacts

Figure 7. The Consistency Thread—Antecedent of the Digital Thread

System Life
Cycle Business

Process

Consistency
Management

Role

Metadata
(Descriptor)

Specific
Model

Trusted Model
Repository

Trusted Model Repository
and Content 2.2

LC Manager of
Target System System Life Cycle Management Project

System 1
Stakeholder

AdvocatePr
oc

es
s

In
fo

rm
at

io
n

Deployed
Generic
Model

(Pattern)

Observed or
Generated

Datasets and
Artifacts

T1
T1

T2 T2T3

T3

The 3 sources of credibility

What stakeholders
now say/want

What past learning
says

What the observed
real world and its
simulation now say

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

22

to the thread generate information samples
within it.) Historical predecessors to the
digital thread bring important perspective
to this evolution. Depending on industry
domain, these include SAE (2016), AIAG
(2006), and ISO (2016).

Because consistency gaps are often root-
ed in conflicting interests of different par-
ties, the Consistency Management role is
the potential site for impactful multi-party
collaboration across the ecosystem or sup-
ply chain. Enabling this collaboration with
explicit models of the respective parties’
collaboration configuration spaces makes
it easier to understand it as a problem of
differential or modular games (Schindel
and Seidman 2021, Schindel 2021, and
Leitmann 1975).

The history of consistency management
across the product life cycle has seen varied
gap sizes at some stages versus others. This
has meant that production, logistics, sustain-
ment, and operation consistency gaps may
be larger or longer-lived until reconciled.
The ASELCM analysis framework helps us
to see that these may be viewed not just as
consistency gaps in System 1’s life cycle (as
viewed by System 2), but also as consisten-
cy gaps in the description of System 2 (as
observed and modeled by System 3). This
suggests another way to recognize and head
off these gaps sooner and at less cost.

Many benefits sought through transfor-
mation to Digital Engineering have been
discussed widely, such as basic issues of
improved information accessibility, early
virtual verification through simulation,
and other gains. The Innovation Ecosystem
Pattern reminds us, through the Consisten-
cy Management Role, of the wider promise
that a variety of Consistency Management
issues at the heart of every life cycle stage
may ultimately be attacked more effective-
ly through the aid of digital information
technologies that assist in Consistency
Management. These include semantic web
technologies, machine learning, consisten-
cy thread signatures, configurable patterns,
and pattern-based model metadata (Herzig
and Paredis 2014; Herzig, Qamar and Pare-
dis 2014; Kerstetter and Woodham 2014;
Redman 2014; and Patterns WG 2020b).

4. Effectiveness of distributed, multi-lev-
el, group learning across an ecosys-
tem. The promise of digital engineering
should not be to optimize single pro-
gram outcomes while “forgetting” what
is learned when the next program starts,
nor to arbitrarily isolate one team’s
learning from other teams within a
shared community. Traditional descrip-
tions of the systems engineering life cy-
cle processes (for example, ISO 15288,
INCOSE Systems Engineering Hand-

book, etc.) describe all the processes a
program should follow to generate all
the information needed across the life
cycle, but are relatively silent on the
questions: “What about what we already
know?” and “What about the impact on
future programs of what we learned the
hard way on past programs?” This begs
the question of what is really meant
by “what we learned” and “what we
know”—what is group knowledge?

The management of balancing acqui-
sition and validation of new information
versus exploiting existing information is
also frequently omitted in those descrip-
tions, left for separate consideration. This
is in ironic contrast to one of the great
successes of modern signal processing and
control theory—the optimal mixing of past
experience with new information, in the
presence of uncertainty, discussed further
in a later section below.

The Innovation Ecosystem model views
effective learning as not just accumulation
of information as IP assets, but instead as
improvement of future performance across
the ecosystem based on past experience.
This especially includes more effective
application of learned results that were
acquired by different people at different
times. The Ecosystem Pattern makes explic-
it the two roles of learning and subsequent
application, and their integration—refer to
Figure 2. That integration can include start-
ing new program executions by configuring
general learned System 1 and 2 patterns
in a form specific to the new program. To
the degree it is performed, this capability is
referred to by the MBSE Patterns Working
Group as pattern-based systems engineer-
ing (PBSE) (Patterns WG 2020a).

Key System 2 capabilities that, if present,
contribute to that performance include:

Synthesizing Generalization: Dis-
tillation of learning as model-based
abstractions, curated at the abstraction
hierarchy level where they can have the
greatest future impact. The “up” (Learn)
arrows in Figure 2;
Validation for Context of Use: Reusable
configurable model verification, vali-
dation, and uncertainty quantification,
credibility assessment, establishment of
pattern metadata on provenance, cred-
ibility, and intended range of use. More
on this in the next section;
Configuring Specialization: Harvest-
ing of accumulated learned patterns at
the place and time (and for the people
where) they are impactful, through their
configuration into new projects as part
of the initiation of those projects. The
“down” (Apply) arrows in Figure 2.

After it is understood that configuration
space is not “flat”, but organized by evolving
patterns at different abstraction levels, two
challenging opportunities can be better
understood:

The dynamic evolutionary nature of se-
mantic interoperability: Domain-spe-
cific ontologies will continue to spring
up as long as new system interactions
and interaction levels are pursued
describing new phenomena—and this
is forever. One of the competencies
required of the digital ecosystem is con-
tinuous collaborative synthesis of new,
often higher-level, semantic frameworks
for interoperability (Schindel 2020).
The opportunities for sharing and
ownership at different levels: Shared
frameworks across large ecosystems can
lift the fortunes of all boats, as in the
case of pre-competitive standards shared
by competitors—but can be perceived
as counter to the interests of individual
suppliers, customers or employees who
wish to own, control, or be differentiated
by less shared models. Non-flat pattern
hierarchy allows for mixing of shared
ecosystem-wide generic patterns with
compatible specializations controlled or
licensed by competitive ecosystem mem-
bers, providing simultaneous differentia-
tion and compatibility.

Digital Engineering offers special prom-
ise in the above areas through the use of
information technologies that empower
virtual models, their generalization and
configuration, and related processes with
capacity exceeding human performance
alone. But it also demands new human
skills and orchestration on the human side
of the Digital Engineering partnership.
Model-based group learning is also related
to issues of trust in model credibility, dis-
cussed next.

5. Group trust in the credibility of
models. Model credibility involves the
verification and validation of a mod-
el’s fitness for use for a stated purpose
(ASME 2018), explicit tracking of
related uncertainties (NAE 2012), and
larger issues of propagation of trust
(Rhodes 2018). The growing prolifer-
ation of model instances, types, and
uses means that more uniform model
metadata approaches are becoming im-
portant to describe those diverse assets
in more uniform ways—somewhat like
the emergence of bar code labels on
supermarket products. Because there
are a variety of model credibility factors
that may be applied, credibility assess-
ment frameworks. (CAFs) can serve

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

23

a useful purpose as part of that model
metadata (Kaizer 2018). The INCOSE
MBSE Patterns Working Group has
developed a model characterization
pattern (MCP) descriptive of models of
all types (Patterns WG 2019a), building
in enterprise-configured CAFs.

Many aspects of the engineering cycle
are concerned with determining whether
aspects of related information are worthy of
trust for use in a given context. When this
interest is translated to operate with virtual
models, it is bolstered by the powerful
technical toolset developed over the longer
history of the (model-based) scientific rev-
olution, in which the credibility of candi-
date models, and their repeated uses across
different instances are both central. Com-
putational model verification, validation,
and uncertainty quantification (VVUQ) is a
vital portion of this infrastructure.

Group trust in model credibility is not
just a technical matter of the fidelity of the
models themselves. Group trust is a socially
transmitted property, in which additional
credibility factors such as trust in interme-
diate messengers and interpreters carries
great weight (Rhodes 2018). Models of
how credibility (or doubts of credibility)
are propagated through ecosystems can
illustrate the contest of multiple factors
impacting group trust, distrust, confidence,
or doubt. The above credibility assessment
frameworks (CAFs) preserve for future
reference the basis on which credibility was
assessed for a given model, whether it later
proves to be valid or not.

6. Managing the proliferation of model
diversity and instances. Such model
credibility information is a special case
of larger class of model metadata—
information outside a virtual model
that describes the virtual model.
Model metadata can variously include
description of a model’s focal subject,
structure, algorithms, intended model
use and context of that use, model
provenance, model credibility, the
nature and scope of the virtual model,
and refer to related model artifacts,
datasets, and life cycle maintenance
history. Figure 3 graphically notes the
role that model metadata plays within
the innovation ecosystem, describing
diverse virtual models (and datasets)
to their potential users, as a kind of
uniform “labeling wrapper” of evolving
virtual models. While it has been
common to consider many aspects of
information technology in planning
Digital Engineering, awareness of the
broader roles of virtual model metadata
deserves expanded awareness.

The diversity of types of virtual models
includes computational models (simula-
tions of all kinds) and descriptive MBSE
models but can also other forms of for-
malized standards-based data structures.
Simulations alone may include phys-
ics-based finite element analysis (FEA) and
computational fluid dynamics (CFD) dis-
cretized continuum simulations, ordinary
differential equation-based simulations,
machine learning models and other forms
of data-driven models, and others. Adding
to this diversity are varied model author
styles, computing environments, and meth-
odologies for model verification, validation,
uncertainty quantification, and credibility
management. The resulting explosion of
model diversity as well as model quantities
is exacerbated by increasing separation
between model authors and model users.

The Model Wrapper generic metadata
role shown in Figure 3 serves purposes
similar to the package labeling, inserts,
and supplemental downloads common to
consumer products. Imagine walking into
a modern supermarket, big box store, or
distributor web site, and finding that all the
package and shelf labeling and explanations
have disappeared except for the ability
to directly view the products (remember
earlier open-air market bazaars). This
conveys some idea of the current situation
concerning proliferation of thousands of
models within an enterprise, and even
more pronounced across a future multi-en-
terprise ecosystem in which exchange of
models occurs. Generic metadata frame-
works for engineering models, such as the
model characterization pattern (Patterns
WG 2019a) and model identity card (MIC)
(Goknur 2015) are key enablers to the ef-
fectiveness of the digital engineering in the
Innovation Ecosystem.

7. Effective evolution of the ecosys-
tem itself—including implementa-
tion. Among the promises of the digital
engineering ecosystem are its own
adaptability, as future environments
and market situations demand. An
essential capability described by the
Innovation Ecosystem Pattern is that
adaptability. In Figures 1 and 2, System
3 is concerned with adaptability of
System 2, beginning by observing and
representing it, followed by analyzing
and deploying adaptations to System 2
instances. Viewing System 2 through
the lens of systems engineering, this in-
cludes implementation. The deployed or
updated “design components” of System
2 are collaborating people, enterprises,
information systems, equipment, and
facilities of System 2, and how they are
organized (interact with each other),

planned over agile release train config-
urations of the System 2 pattern. In ad-
dition to the challenges of engineering,
such adaptation implementation also
carries all the challenges of enterprise
organizational change management
(OCM) (Kotter 2014). Just as the forces
of multi-stage selection operate over the
life cycles of the engineered products of
System 1, (other) multi-stage selec-
tion forces also shape the evolution
of System 2 (Patterns WG 2020a).
Understanding those forces is essential
to the conscious design of (or at least
influence on) the evolution of System
2. For complex business ecosystems
involving multiple partners, not only is
the alignment of their technical capabil-
ities vital, but also the alignment of their
business interests and incentives. These
issues should remind us that successful
collaboration across System 2 requires
more than just a digital medium for
that collaboration. Heeding the wisdom
of the lengthy related literature (for
example, Kotter 2014) on organizational
change is a key part of implementation
planning.

In the language of business management
community, “business ecosystem” has come
to refer to particular ecosystem architec-
tures (for System 2) which operate flexibly
as small “markets” in which modularity of
the System 1 technical approach encour-
ages a more dynamic (and accordingly less
stable) arrival and departure of compet-
ing candidate System 2 partners offering
contributions to solutions. (Jacobides
2017)—this in contrast to traditional OEM
plus captive smaller suppliers linear supply
chain network models. Both the advantages
and disadvantages of such approaches can
be seen in the real history of the personal
computer (PC). Early PCs were proprietary
closed architectures from competing end
product suppliers. This picture was disrupt-
ed when IBM opened the digital product’s
electronic circuit card bus specification and
business ecosystem to third party suppliers
who could directly supply add-in circuit
cards to the end user. The market dramat-
ically expanded through innovative add-
ons, lifting all boats, but eventually driving
the originator (IBM) of that approach out
of the market. These are not just stories of
the System 1 architecture, but also of the
System 2 architecture.

Selection processes performed by System
2 and 3 can be understood as cycles of
their Consistency Management Roles (see
Figure 3), selecting opportunities, require-
ments, candidate designs, and other aspec
ts of both System 1 products and System 2
enterprise designs. In those cycles, Digital

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

24

Engineering offers special promise for ex-
ploiting the following “Goldilocks” insight
from the successful history of engineering
certain challenging systems:

More consideration of empirical
inputs: When more agility was needed
to converge sooner on the real needs
of stakeholders and real solutions to
them, the pioneers of agile engineer-
ing introduced cycles that paid earlier,
more frequent, and ongoing attention to
incoming reality signals from System 2
experiment and empirical measurements
involving real world signals instead of
isolated planning. The upside of this
produces early minimum viable products
(MVPs), rapid learning by individuals
and small teams, and successful “pivots”.
On the downside, it may miss exploita-
tion of what was already discovered
and can produce ill-conceived course
changes chasing noisy data.
More consideration of patterns of
experience: When more instances of
variant products proliferated to address
different market segments, the pioneers
of design patterns and product line engi-
neering introduced cycles that paid more
attention to shared historical patterns
of product designs, requirements, and
other common but configurable assets.
The upside of this produces increased IP
leverage and flexibility. If overperformed,
it risks constraints that may miss exter-
nal shifts and trends, dragging along too
much of the past.
Goldilocks as Kalman: More optimal
mixing observation and experience:
Formal systems engineering process
descriptions often tell us all the things

we should do to learn what is needed for
good life cycles but may be silent on the
questions “what about what we already
know?”, and “how can we discover new
things sooner?”, addressed by the two
complementary points above. In one of
the most impactful examples of break-
through engineering through applied
mathematics, Rudolf Kalman introduced
an approach to optimal mixing of these
two in the presence of uncertainty, the
Kalman Filter approach to Bayesian
estimation, power navigation to landing
on the Moon, world-wide personal com-
munication systems, countless industrial
control systems, and other applications
of this combination. Digital Engineering
offers a medium in which the Consis-
tency Management Role of Figure 3 can
be advanced to leverage those insights
in support of human decision-making
(Schindel 2017b). Improving ontologi-
cal patterns and their use can improve
meaning and understanding of empir-
ical data from improved sensory and
observational networks. Collaborative
ecosystem efforts to create capabilities
such as joint all domain command and
control (JADC2) can benefit from these
historical insights (CRS 2021).

CONCLUSIONS, NEXT STEPS, AND AN
INVITATION

The seven selected aspects of the Eco-
system Pattern discussed in this paper
demand greater community-wide attention
in planning and analyzing digital ecosys-
tems, and the neutral descriptive frame-
work described offers a means of doing so.
The systems engineering community has a
shared interest in the network benefits of

community-wide advancement of ecosys-
tems for digital engineering. The INCOSE
MBSE Patterns Working Group continues
to pursue the discovery and expression of
explicit model-based patterns, which fuel
digital ecosystems as “water through their
pipes”, but which also represent those eco-
systems themselves (Patterns WG 2021).

The Patterns Working Group conducts
most of its activities as collaborations with
other INCOSE and additional technical
society groups, to advance awareness and
the state of practice. Interested readers are
invited to participate in this progress and
learn along with us about use of the related
aids and examples that this reference pat-
tern supports:

 ■ Details of the Ecosystem Pattern, now
being tested in its OMG SysML form

 ■ The Ecosystem Pattern as a digital
engineering capability planning aid
(Patterns WG 2020c)

 ■ Basics of S*Models, S*Patterns, and the
S*Metamodel (Patterns WG 2019b)

 ■ Domain specific applications of
model-based patterns (Patterns WG
2021)

ACKNOWLEDGEMENTS
The Ecosystem Pattern is informed by

the practices and ideas from numerous
pioneers and practitioners. The encourage-
ment, suggestions, and inspiration from
Rick Dove, chair of the INCOSE Agile
Systems Engineering Working Group, the
lead team of the INCOSE Agile Systems
Discovery Project, and the membership of
INCOSE MBSE Patterns Working Group,
along with the anonymous reviewers of this
paper, are all acknowledged with gratitude.

REFERENCES
 ■ AIAG. 2006. “APQP & PPAP Requirements for Automotive.”

Automotive Industry Action Group, Southfield, US-MI.
https://www.techstreet.com/standards/aiag-ppap-4?product_
id=1257705 .

 ■ ASME. 2018. “VV40: Assessing Credibility of Computational
Modeling through Verification and Validation: Application to
Medical Devices.” New York, US-NY. https://www.asme.org/
codes-standards/find-codes-standards/v-v-40-assessing-cred-
ibility-computational-modeling-verification-validation-applica-
tion-medical-devices .

 ■ Beihoff, B., and W. Schindel. 2011. “Systems of Innovation I:
Summary Models of SOI Health and Pathologies.” INCOSE
2011 International Symposium, Denver, US-CO.

 ■ CRS. 2021. “Joint All-Domain Command and Control
(JADC2): Background and Issues for Congress.” Congressional
Research Service, Washington, US-DC. https://crsreports.
congress.gov/product/pdf/R/R46725/2 .

 ■ Dove, R., and W. Schindel. 2019. “Agile Systems Engineering
Life Cycle Model for Mixed Discipline Engineering.” INCOSE
2019 International Symposium, Orlando, US-FL.

 ■ Dove, R. and W. Schindel. 2017. “Case study: Agile SE Process for
Centralized SoS Sustainment at Northrop Grumman.” INCOSE
2017 International Symposium, Adelaide, AU. https://www.
omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:patterns:is2017--
northrup_grumman_case_study_dove_and_schindel_bp.pdf .

 ■ Dove, R., W. Schindel, and K. Garlington. 2018. “Case Study:
Agile Systems Engineering at Lockheed Martin Aeronautics
Integrated Fighter Group.” INCOSE 2018 International
Symposium, Washington, US-DC. https://www.omgwiki.org/
MBSE/lib/exe/fetch.php?media=mbse:patterns:is2018_-_aselcm_lmc_
case_study.pdf .

 ■ Dove, R., W. Schindel, and W. Hartney. 2017. “Case Study:
Agile Hardware/Firmware/Software Product Line Engineering
at Rockwell Collins.” IEEE 11th Annual International Systems
Conference. Institute of Electrical and Electronic Engineers,
New York, US-NY. https://www.omgwiki.org/MBSE/lib/exe/fetch.
php?media=mbse:patterns:pap170424syscon-casestudyrc.pdf .

 ■ Dove, R., W. Schindel, and C. Scrapper. 2016. “Agile
Systems Engineering Process Features Collective Culture,
Consciousness, and Conscience at SSC Pacific Unmanned

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

25

Systems Group.” INCOSE 2016 International Symposium,
Edinburgh, GB-SCT. https://www.omgwiki.org/MBSE/lib/exe/
fetch.php?media=mbse:patterns:is2016_—_autonomous_vehicle_
development_navy_spawar.pdf .

 ■ Göknur, S., C. Paredis, B. Yannou, E. Coatanéa, and E. Landel.
2015. “A Model Identity Card to Support Engineering Analysis
Model (EAM) Development Process in a Collaborative
Multidisciplinary Design Environment/” IEEE Systems Journal,
IEEE, New York, US-NY. https://hal.archives-ouvertes.fr/hal-
01184938/document .

 ■ Herzig, S., and C. Paredis. 2014. “A Conceptual Basis
for Inconsistency Management in Model-Based Systems
Engineering.” CIRP 2014 Design Conference, International
Academy for Production Engineering, Paris, FR. https://
www.sciencedirect.com/science/article/pii/S2212827114007586/
pdf?md5=c9bdd8aba94e820ec43b56330225daa6&pid=1-s2.0-
S2212827114007586-main.pdf .

 ■ Herzig, S., A. Qamar, and C. Paredis. 2014. “Inconsistency
Management in Model-Based Systems Engineering.” 2014
Global Product Data Interoperability Summit, Southfield,
US-MI. http://gpdisonline.com/wp-content/uploads/
past-presentations/AC45_GeorgiaTech-SebastianHerzig-
InconsistencyManagementInMBSE.pdf .

 ■ ISO. 2015. “ISO 15288:2015 Systems and Software Engineering
— System Life Cycle Processes.” International Standards Orga-
nization, Geneva, CH. https://www.iso.org/standard/63711.html .

 ■ ISO. 2016. “ISO 13485:2016 Medical devices — Quality
Management Systems — Requirements for Regulatory
Purposes.” International Standards Organization, Geneva, CH.
https://www.iso.org/standard/59752.html .

 ■ Jacobides, M. 2017. “Towards a Theory of Ecosystems (with
Phenomenological Preamble).” Keynote presentation at 5th
International Conference of the Armand Peugeot Chair Paris,
FR. https://chairgovreg.fondation-dauphine.fr/sites/chairgovreg.
fondation-dauphine.fr/files/attachments/JCG%20CAP%20Paris%20
2017%20presentation%20S.pdf .

 ■ Kaizer, J. 2018. “Credibility Assessment Frameworks –
Personal Views.” ASME Symposium on Verification and
Validation, American Society of Mechanical Engineering, New
York, US-NY. https://cstools.asme.org/csconnect/FileUpload.
cfm?View=yes&ID=54674 .

 ■ Kerstetter, M., and K. Woodham. 2014. “SAVI Behavior
Model Consistency Analysis.” 2014 Global Product Data
Interoperability Summit, Southfield, US-MI. http://gpdisonline.
com/wp-content/uploads/past-presentations/AVSI-Kerstetter-SAVI
BehaviorModelConsistencyAnalysis-CAE-Open.pdf .

 ■ Kotter, J. 2014. Accelerate: Building Strategic Agility for a
Faster-Moving World. Cambridge, US-MA: Harvard Business
Review Press.

 ■ Leitmann G. 1975. “Cooperative and Non-Cooperative
Differential Games.” G. Leitmann and A. Marzollo, editors.
Multicriteria Decision Making. International Centre for
Mechanical Sciences (Courses and Lectures) 211: Springer,
Vienna, AT. https://doi.org/10.1007/978-3-7091-2438-3 .

 ■ NAE. 2012. “Assessing the Reliability of Complex Models:
Mathematical and Statistical Foundations of Verification,
Validation, and Uncertainty Quantification.” National
Academy of Engineering, Washington, US-DC. https://www.
nap.edu/catalog/13395/assessing-the-reliability-of-complex-
models-mathe matical-and-statistical-foundations .

 ■ Patterns WG. 2021. INCOSE MBSE Patterns Working
Group Web Site: https://www.omgwiki.org/MBSE/doku.
php?id=mbse:patterns:patterns .

 ■ Patterns WG. 2019a. “The Model Characterization Pattern:
A Universal Characterization & Labeling S*Pattern for All
Computational Models.” V1.9.3. INCOSE Patterns Working
Group web site, International Council on Systems Engineering,
San Diego, US-CA. https://www.omgwiki.org/MBSE/lib/exe/fetch.
php?media=mbse:patterns:model_characterization_pattern_mcp_
v1.9.3.pdf .

 ■ Patterns WG. 2019b. “Methodology Summary: Pattern-
Based Systems Engineering (PBSE), Based On S*MBSE
Models.” INCOSE Patterns Working Group web site,
International Council on Systems Engineering, San Diego,
US-CA. https://www.omgwiki.org/MBSE/lib/exe/fetch.
php?media=mbse:patterns:pbse_extension_of_mbse—methodology_
summary_v1.6.1.pdf .

 ■ Patterns WG. 2020a. “ASELCM Reference Pattern: Reference
Configuration Stages for Models, Model Patterns, and the Real
Systems they Represent.” INCOSE Patterns Working Group web
site, International Council on Systems Engineering, San Diego,
US-CA. https://www.omgwiki.org/MBSE/lib/exe/fetch.php?me-
dia=mbse:patterns:configuration_stages_v1.4.5.pdf .

 ■ Patterns WG. 2020b. “Consistency Management as an
Integrating Paradigm for Digital Life Cycle Management
with Learning.” INCOSE Patterns Working Group web
site, International Council on Systems Engineering, San
Diego, US-CA. https://www.omgwiki.org/MBSE/lib/exe/fetch.
php?media=mbse:patterns:aselcm_pattern_—_consistency_
management_as_a_digital_life_cycle_management_paradigm_
v1.2.2.pdf .

 ■ Patterns WG. 2020c. “Example Use of ASELCM Pattern
for Analyzing Current State, Describing Future State,
and Constructing Incremental Release Roadmap to
Future.” INCOSE Patterns Working Group web site,
International Council on Systems Engineering, San Diego,
US-CA. https://www.omgwiki.org/MBSE/lib/exe/fetch.
php?media=mbse:patterns:example_evolutionary_roadmap_v1.3.3a.
pdf .

 ■ Redman, D. 2014. “Importance of Consistency Checking in the
SAVI Virtual Integration Process (VIP).” 2014 Global Product
Data Interoperability Summit, Southfield, US-MI. http://
gpdisonline.com/wp-content/uploads/past-presentations/SE_67_
AVSI-Redman-ConsistencyCheckingInSAVI.pdf .

 ■ Rhodes, D. 2018. “Interactive Model-Centric Systems
Engineering (IMCSE).” Phase 5 Technical Report. SERC-2018-
TR-104. Systems Engineering Research Center, Hoboken, US-
NJ. https://apps.dtic.mil/sti/pdfs/AD1048003.pdf .

 ■ SAE. 2016. “AS9145: APQP & PPAP Requirements for
Aerospace and Defense.” SAE International, Warrendale, US-
PA. https://www.sae.org/standards/content/as9145/ .

 ■ Schindel, W. 2013. “Systems of Innovation II: The Emergence
of Purpose.” INCOSE 2013 International Symposium,
Philadelphia, US-PA. https://www.omgwiki.org/MBSE/lib/exe/
fetch.php?media=mbse:patterns:systems_of_innovation--the_
emergence_of_purpose_v1.3.6.pdf .

 ■ ——— . 2021. “Variational Forces of Modularity: Coupled Macro
and Micro Patterns in the Innovation Ecosystem.” 2021 PLE
Momentum Conference, Big Lever Inc, Austin, US-TX. https://
www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:pat-
terns:the_forces_of_modularity_v1.3.3.pdf .

 ■ ——— . 2017a. “MBSE Maturity Assessment: Related INCOSE &
ASME Efforts, and ISO 15288.” MBSE World Symposium, No
Magic, Inc., Allen, US-TX. https://www.omgwiki.org/MBSE/lib/
exe/fetch.php?media=mbse:patterns:model_based_maturitiy_plan-
ning_asme_incose_may_2017.pdf .

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

26

 ■ ——— . 2017b. “Innovation, Risk, Agility, and Learning, Viewed
as Optimal Control & Estimation.” INCOSE 2017 Internation-
al Symposium, Adelaide, AU. https://www.omgwiki.org/MBSE/
lib/exe/fetch.php?media=mbse:patterns:risk_and_agility_as_opti-
mal_control_and_estimation_v1.7.2.pdf .

 ■ ——— . 2020. “SE Foundation Elements: Implications for Future
SE Practice, Education, Research.” INCOSE Vision 2035
Project, 21-22. International Council on Systems Engineering,
San Diego, CA (US). https://www.omgwiki.org/MBSE/lib/exe/
fetch.php?media=mbse:patterns:science_math_foundations_for_
systems_and_systems_engineering--1_hr_awareness_v2.3.2a.pdf .

 ■ Schindel, W., and R. Dove. 2016. “Introduction to the Agile
Systems Engineering Life Cycle MBSE Pattern.” INCOSE
2016 International Symposium, Edinburgh, GB-SCT. https://
www.omgwiki.org/MBSE/lib/exe/fetch.php?media=mbse:pat-
terns:is2016_intro_to_the_aselcm_pattern_v1.4.8.pdf .

 ■ Schindel, W., S. Peffers, J. Hanson, J. Ahmed, and W. Kline.
2011, “All Innovation Is Innovation of Systems: An Integrated
3-D Model of Innovation Competencies.” 2011 Conference
of the American Society for Engineering Education (ASEE),
Vancouver, CA-BC.

 ■ Schindel, W. and T. Peterson. 2016. “Introduction to Pattern-
Based Systems Engineering (PBSE): Leveraging MBSE
Techniques.” INCOSE 2016 Great Lakes Regional Conference,
Mackinac Island, US-MI. https://www.omgwiki.org/MBSE/lib/
exe/fetch.php?media=mbse:patterns:pbse_tutorial_glrc_2016_
v1.7.4.pdf .

 ■ Schindel, W., and M. Seidman. 2021. “Applying Digital Thread
Across the Product Life Cycle.” In Defense Network Technical
Interchange Meeting, 9-10 June, Indiana Defense Network,
Indianapolis, US-IN. https://www.omgwiki.org/MBSE/lib/exe/
fetch.php?media=mbse:patterns:team_top_gun_idn_presenta-
tion_06.09.2021_v2.1.1.pdf .

 ■ Walden, D. ed. 2015. Systems Engineering Handbook: A Guide
for System Life Cycle Processes and Activities. Fourth Edition.
Revised by D. Walden, G. Roedler, K. Forsberg, R. Hamelin,
and T. Shortell. INCOSE, San Diego, US-CA: Published by
Wiley.

ABOUT THE AUTHOR
William D. (Bill) Schindel is president of ICTT System

Sciences. His engineering career began in mil/aero systems with
IBM Federal Systems, included faculty service at Rose-Hulman
Institute of Technology, and founding of three systems enterprises.
He is an INCOSE fellow, chair of the MBSE Patterns Working
Group of the INCOSE/OMG MBSE Initiative, and was a member
of the lead team of the INCOSE agile systems engineering life
cycle discovery project. Bill co-led a 2013 project on systems of
innovation in the INCOSE System Science Working Group.

William D. (Bill) Schindel is president of ICTT System
Sciences. His engineering career began in mil/aero systems with
IBM Federal Systems, included faculty service at Rose-Hulman
Institute of Technology, and founding of three systems enterprises.
He is an INCOSE fellow, chair of the MBSE Patterns Working

Schindel continued from page 16

Group of the INCOSE/OMG MBSE initiative and was a member
of the lead team of the INCOSE agile systems engineering life
cycle discovery project. Bill co-led a 2013 project on systems of
innovation in the INCOSE System Science Working Group.

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

27

SYSTEMS ENGINEERING PROSE

 ABSTRACT
Traditional systems engineering pays attention to careful composition of prose requirements statements. Even so, prose appears
less than what is needed to advance the art of systems engineering into a theoretically based engineering discipline comparable to
electrical, mechanical, or chemical engineering. Ask three people to read a set of prose requirements statements, and a universal
experience is that there will be three different impressions of their meaning. The rise of model-based systems engineering might
suggest the demise of prose requirements, but we argue otherwise. This paper shows how prose requirements can be productively
embedded in and a valued formal part of requirements models. This leads to the practice-impacting insight that requirements
statements can be non-linear extensions of linear transfer functions, shows how their ambiguity can be further reduced using
ordinary language, how their completeness or overlap more easily audited, and how they can be “understood” more completely
by engineering tools.

Requirements
Statements Are Transfer
Functions: An Insight
from Model-Based
Systems Engineering

William D. Schindel, schindel@ictt.com
Copyright © 2005 by William D. Schindel. Published and used by INCOSE with permission.

Traditional Requirements
Discipline. Composing good
requirements statements prose
has a long tradition in systems

engineering. As described in (Buede 2000),
systems engineers are typically instructed
that effective requirements statements
should be:

 ■ Unambiguous
 ■ Understandable
 ■ Correct
 ■ Concise
 ■ Traceable, Traced
 ■ Design Independent
 ■ Verifiable
 ■ Unique
 ■ Complete
 ■ Consistent
 ■ Comparable

 ■ Modifiable
 ■ Attainable.

The resulting requirements describe sys-
tems, are stored in databases, expressed in
requirements documents, and interpreted
by people. (See Figure 1.)

Growing Challenges to Prose.
Well-structured prose requirements
statements are of course more effective
for this worthwhile and practical care.
But are traditional prose requirements
compositional principles effective
enough for the future demands of
systems engineering, as it strives to move
from a craft-like body of knowledge to
a scientifically-founded engineering
discipline, comparable to electrical,
mechanical, or chemical engineering?

Engineered target systems are becoming
more complex, more mission-critical,
more risk-averse, more in need of clear

Figure 1. Specification documents
describe things to interpreters

describes
Requirements
Specification

Specification Interpreter

Specified Thing

System Requirements
Specification Document

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

28

human understanding, demanding of
faster development cycles, and supported
by larger engineering teams, who are
interoperating with more engineering
tools. Is it reasonable to expect that well-
composed prose will be up to these rising
technical demands?

Is good prose the bulwark of good
engineering, or of good literature? If Newton
and his followers had been forced to use
only prose to express their reasoning, would
today’s engineers be using orbital mechanics
to design mission systems? The Principia
(Newton 1668) straddles the transition from
prose-based geometric proof to the power
of mathematics. Should we expect that our
systems engineering prose will be replaced
with mathematical equations?

SYSTEMS ENGINEERING MODELS—
REPLACEMENT OR EXTENSION?

Model-Based Systems Engineering.
INCOSE has helped to lead progress
to model-based methods for systems
engineering (INCOSE MBSE 2004). The
use of graphical and other forms of models
has appeared in systems engineering
through application of graphically
focused modelling languages (backed by
underlying information metamodels) such
as IDEF0, UML®, and most recently SysML®
modelling languages, described in Buede
(2000), Oliver (1999), Booch et al. (1999),
SysML (2004), and AP233 (2004).

Models are data structures (often, but not

not fully reviewed here, intends that these
models, when compared to earlier ap-
proaches:

 ■ Are more explicit
 ■ Are more compact
 ■ Enhance visualization, understanding,
and communication

 ■ Enhance the formal underlying
theo re tical structure of engineering
information, to improve ability to
analyze, simulate, (execute the model),
and even synthesize

 ■ Enable database-driven processes in-
stead of document-driven processes

 ■ Improve shared “understanding” of the
meaning of models to be exchanged
between machines (engineering tools)
and humans

 ■ Provide theoretical foundation that
was not available in earlier prose-based
approaches, supplementing intuition
with discipline.

Electrical schematic diagrams and
mechanical drawings, if drawn according to
learned disciplines, provide engineers with
relatively unambiguous models of systems,
compared to the typically more ambigu-
ous experience with prose-based systems
engineering requirements documents
(Glasgow et al. 1995). Not all diagrams are
unambiguous, as famously illustrated by
Escher (1992). How can general system
requirements be expressed as clearly and
unambiguously as the design communicat-
ed by an electrical schematic diagram?

Will Diagrams Replace Prose? Prog-
ress occurring with model-based systems
engineering might lead to the expectation
that the graphic components of models will
eventually replace the use of prose-based
requirements statements altogether. We
argue differently here, in spite of the claim
that “a picture is worth a thousand words”.

Our experience is that the most produc-
tive outcome is not the total replacement
of prose with diagrams, but a merging of

these two forms of information, into a total
formal model that includes both. Current
efforts to incorporate prose into models
in some fashion are described in SysML
Partners (2004) for SysML modelling and
in AP233 (2004) for the related AP233
activity. We will describe the embedding of
prose into the model, as a first-class part of
that model. The approach we will describe
is something more than just embedding
requirements prose as unstructured text.
Our inspiration for how prose should be
embedded in models comes from examin-
ing the underlying meaning of the original
requirements prose—the special semantics
of requirements statements as a specialized
subset of all prose.

Given current practices, tools, trends,
and standards efforts, this outcome is by no
means obvious and requires both careful
theoretical and practical review to under-
stand what is possible and how one might
interpret current evolution of practice.

EMBEDDING THE PROSE IN THE MODELS
Transfer Functions. A rich vein in

the theory of linear systems is the idea of
transfer functions, as described in Churchill
(1958). Transfer functions describe the
relationship between system inputs and
outputs, typically in the frequency domain
(see Figure 3).

Such a transfer function, parameterized
by attributes (K1, K2, K3), completely
characterizes the behavior of the associated
linear system — all its behavioral charac-
teristics (whether in the frequency or time
domain) can in principle be derived from
the transfer function description. Unfor-
tunately, this utility appears limited, as
most aspects of the systems encountered by
engineers are non-linear, and therefore not
described in this way.

Nevertheless, we retain one idea from
linear systems and their transfer func-
tions — the benefit of characterizing the
external behavior of a system in the form of

Model
describes

AP233

(Machine Interpreters) (Human Interpreters)

Model Interpreter

Modeled Thing

Figure 2. Models describe things to
interpreters

always, represented graphically) intended
to explicitly represent facts (for example,
requirements, designs) about systems (refer
to Figure 2). These facts might otherwise
be implicit in knowledge of experienced
systems engineers or domain experts.
Without explicit models, these facts are
not equally obvious to all, require reading
“between the lines”, and are opportunities
for misunderstandings, engineering process
errors, rework, or failures.

The model-based engineering approach,

H(s) = (K1 + (K2 s) + (K3 / s))

K1

K3 / s

K2 s

Proportional

Input I (s) Output O(s)Integrator

Differentiator

Subject System
PID Controller H(s)

Operator Controlled
Plant+ +

−

Figure 3. Logical architecture of a PID controller

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

29

relationships between its inputs and outputs.
Engineers recognize the value of somehow
characterizing a system’s externally visible
behavior, whether in the form of data
sheets, commercial specifications, or oth-
erwise. But can we expect to do this in the
form of algebraic or differential equations?
Most (perhaps all) engineered systems
evade practical description in the form of
such equations — nonlinear or otherwise.
Furthermore, system stakeholders often
don’t speak the language of mathematics.

What we are interested in retaining (and
abstracting) is the idea of statements of
relationships between inputs and outputs,
whether in the form of simple mathematical
equations or something else. The idea is to
describe the relationship of values of the sys-
tem’s outputs to the values of its inputs — in-
cluding the impact of time history. Why is
characterizing such behavior so important?

What are Functional Requirements,
Really? Traditional systems engineer-
ing teaches us that requirements are to
describe what a system should do, not how
it does it. Just what does this really mean,
in the language of science, engineering,
and mathematics? Whether we use prose
requirements statements or some other
form of description, the need is to describe
the system as a “black box”— describing
its required behavior as “seen” by the other
systems with which it interacts (Figure
4), without discussing its internal design
implementation. This certainly sounds like
a formal characterization of the system and
could be described in terms of relationships
between its inputs and output.

What About “Non-Functional” Re-
quirements? Why don’t we typically think
of “requirements” as this kind of formal
external characterization? At least two is-
sues usually suggest that “requirements” for
a system might not be exactly the same idea
as this formal behavioral characterization
of the system:

1. Stakeholder requirements in
the non-technical language and
perspective of stakeholders may
seem different than such technical
system characterization—witness,
for example quality function
deployment’s (QFD’s) approach, as
described in Clausing et al. (1988).

2. Requirements for system reliability,
manufacturability, supportabili-
ty, or the other “ilities,” as well as
system capacities, tolerances, or
other requirement categories may
seem different than system technical
characterization — to the point that
these are sometimes referred to as
“non-functional” requirements, as in
Chung et al. (1999).

However (as discussed later below), all
these different needs eventually map to and
can be productively expressed as the external
behavior of the system, expressed as the
totality of its input-output relationship
characteristics. Indeed, for all of these, sys-
tems engineers typically “derive” technical
language requirements that are in principle
objectively testable (or otherwise analyzed)
input-output behaviors at the interfaces
of the system, while recognizing that such

“technical requirements” are different
(transformed from) the original stakehold-
er requirements.

The theme of our argument is that all
requirements statements are input-output
relationships, or generalizations of transfer
functions, expressing external behavior.
(Design constraints are not a part of this
argument, but are likewise traceable to
desired external behaviors, which should
be included.) A key attraction of this view
is to take better advantage of the edifice of
the scientific- mathematical understanding
based on physical interactions that was
built by giants such as Newton, Hamil-
ton, Maxwell, and others (Newton 1668,
Hamilton 1834, Sussman 2001, and Landau
et al. 1976), as the scientific underpin-
nings of modern engineering disciplines.
Indeed, the overall system engineering
methodology from which this view is taken
(Schindel 2002, Schindel et al. 2002) is
based upon the concept of interactions of
multiple components, versus the behavior
of any single component in isolation. While
this viewpoint is foundational in science,
systems engineering of requirements some-
times takes the isolated system perspective,
leading to later integration challenges.

We treat all the requirements on a system
as ultimately expressed (possibly through
derivation mappings from stakeholder
needs or other forms) in the form of system
interaction behavior at external system
boundaries. This behavior can be described
in terms of relationships between system
inputs and outputs that characterize the
system. These relationships are frequently

Figure 4. System external inputs and outputs

Atmosphere Vegetation

Bystander

Compost
PileOperator

Terrain Obstacle

Fueling
System

Thermal Hazard Energy

Exhaust Gas Lawn Grass

Lawn Grass

Shearing Force

Ejected MatterFuel

Traction
Force

Bump
Force

Operating Command

Status Feedback

Terrain Appearance

Obstacle Appearance

Atmospheric Air

Lawnmower System

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

30

parameterized by system attributes. This
also allows us to take advantage of both
contemporary modeling languages (SysML
Partners 2004, AP233 2004), as well as the
success of physics.

The Return of Prose to the Model. The
approach described here, then, is to see
requirements statements prose as existing
solely for the purpose of expressing
required system input-output behavioral
relationships. This is not the most widely
held or traditional view of requirements
statements. We can conceive of our typical
prose sentences as a kind of generalization
of mathematical equations, expressing
what in the end really are relationships
between input and outputs. Indeed, this
approach is familiar in the world of VHSIC
hardware description language (VHDL)
characterization of digital electronics
(Ashenden 1996) or propositional calculus
assertions about system logical behavior
(Carnap 1958). It also fits the cases in
which there are algebraic, differential,
or integral equations relating inputs
and outputs mathematically (whether
deterministically or stochastically), as
well as fuzzy relationships (Zadeh 1965).
Similarly, requirements statements may
describe relationships by the use of tables,
graphs, or other representations of input-
output (I/O) relationships. Developers of
modeling languages benefit from noting
that equations, graphs, tables, may not
need improvement, but instead direct
incorporation into the model. But what is
the practical implication for regular prose
sentences in English or other national
languages?

The first implication of this approach is a
simplified way to think about requirements
statements: As shown in Figure 5, require-
ments statements for a given subject system
need only contain:

1. References to inputs and outputs.
2. Statements of relationships between

them, including attributes that pa-
rameterize those relationships.

This simplifies the process of compos-
ing, as well as interpreting, analyzing, and
auditing, these requirements statements.
It does so by more than traditional prose
grammatical means — it does so by taking
a mathematical — physical modeling view
of systems, in the tradition of engineering
and science. At the same time, it preserves
the “normal everyday language” aspects of
requirements statements.

Figure 5 is an information model of
prose requirements statements, and some
such statements will contain multiple (or
no) instances of the classes it describes.
While not every requirement statement
needs to contain inputs, outputs, or attri-

butes, every such statement should contain
at least one of these, and will refer to at
least one relationship. There should always
be a clear association to a subject system.
The complete characterization of the total
relationship between system inputs and
outputs is the union of all that system’s
prose requirements statement models.

In the following example requirements
statements, the prose has been punctuated
to make the components of Figure 5 more
evident:

 ■ Inputs and outputs are underlined.
 ■ [Attributes] are in brackets.
 ■ Relationships are italicized.

1. “The Lawnmower System shall
operate with [Hourly Mowing
Capacity] of at least 1 level ground
acre per hour, at [Max Elevation]
up to 5,000 feet above sea level, and
[Max Ambient Temperature] of up
to 85 degrees F., at up to 50% [Max
Relative Humidity], for [Foliage
Cutting Capacity] of Acme American
Standard one week Lawn Grass.”

2. “The Lawnmower System shall
operate using Fuel consisting of
gasoline having a [Min Octane
Rating] of not less than 92,
combusted with Atmospheric Air.”

3. “The Lawnmower System shall
operate with [Fuel Economy] of
at least 1 hour / gallon at [Min
Elevation] of 0 feet ASL, at [Max
Ambient Temperature] 85 degrees
F., 50% [Max Relative Humidity], for
Acme American Standard one week
Lawn Grass.”

4. “The Lawnmower System shall
operate with [Elevation Derating] of
10% improvement in [Fuel] per 1,000
feet of elevation reduction, to a [Min
Elevation] of 0 feet ASL.

5. “The Lawnmower System shall
operate meeting the more demanding
of state and federal standards for

[Max Gaseous Pollution] and [Max
Particulate Pollution] of Exhaust Gas.

6. “The Lawnmower System shall
operate with [Operating MTBF] no
less than 500 hours.”

7. “The Lawnmower System shall oper-
ate so as to protect the Operator from
Thermal Hazard Energy by maintain-
ing all accessible metallic surfaces at a
[Maximum Surface Temperature] of
less than 180 degrees F.”

Decomposition, Logical Architecture,
and Allocation. Prose requirements
statements are traditionally transformed
into derived statements that describe
requirements having smaller scope and/
or greater specificity or detail. This
traditional approach is matched in the
perspective described here by the process
of decomposing (partitioning) a subject
system into logical subsystems. These are
groupings of required external behavior,
not design allocations. Refer to Figure 6 for
a Logical Architecture partitioning external
behavior (not design) of Figure 4.

In the above example, requirement (1) is
decomposed in the same way that Figure
6 decomposes the Lawnmower System
into subsystems. Each of the following
requirements, derived from requirement
(1) above, is allocated to a different logical
subsystem of Figure 6:

1.1) “The Power Subsystem shall
generate [Power Output] of combined
Propulsion Power and Cutting Power
at [Max Elevation] up to 5,000 feet
above sea level, and [Max Ambient
Temperature] of up to 85 degrees F., at
up to 50% [Max Relative Humidity].”

1.2) “The Carriage and Drive Subsystem
shall generate a Traction Force sufficient
to propel over an [Hourly Mowing
Capacity] of at least 1 level ground acre
per hour, by converting a Propulsion
Power input of [Traction Power
Consumption].”

1.3) “The Cutting Subsystem shall generate
Shearing Force sufficient to cut and
capture Lawn Grass of at least 1 ground
acre per hour of [Foliage Cutting
Capacity] of Acme American Standard
one week Lawn Grass, by converting a
Cutting Power input of [Cutting Power
Consumption].”

This illustrates the introduction of interme-
diate (internal) input-output variables, as
well as subsystem attributes and budgets.

ADDITIONAL IMPLICATIONS
The above argument leads us to write

Subject
System

Input OutputRelationship

Attribute

Prose Requirements Statement

“The system shall.”

Figure 5. Prose requirements metamodel

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

31

technical requirements statements (derived
from less technical statements of stakehold-
er needs) that explicitly describe (param-
eterized) input-output relationships. This
has a number of additional implications,
including the following areas.

Improved, Inspectable Statement
Structure. Expressing requirements in the
form described here significantly improves
the ability to inspect requirements for
completeness, as well as clarity. This is
because they are expressed with respect to
(and in fact are embedded in and part of) a
system model, in which their formal role is
now exactly to characterize system outputs
with respect to system inputs. We can ask,
“Does this set of requirements statements
specify the required system output values
for all input values (and histories)?” Lack
of coverage, as well as overlap or conflict,
are more easily detected. A traditional
challenge of specifying system require-
ments is understanding whether we are
“done” generating them. While some of this
is uncertainty about stakeholder needs, in
more complex systems a typical problem is
determining whether a candidate require-
ments specification completely characteriz-
es the system at all.

Implications for Tools. When the
micro-structure of requirements statements
is understood to be a parameterized
statement of relationship between
inputs and outputs, then tools can better

“understand” the semantics of these
statements. Such tools can potentially
answer questions about requirements, even
to the extent of improving the executability
of models in simulation, a goal described
in Mellor (2002) and Karayanakis (1993).
Simulation relationships are directly
embedded in the model.

Implications for Models. When the
micro-structure of requirements statements
is understood to be a parameterized state-
ment of the relationship between inputs
and outputs, then the form of requirements
models themselves can be more expressive
and explicit than if these statements are
simply viewed as strings of textual prose.
Refer to the requirements diagrams of
SysML Partners (2004).

Implications for Reuse. By making
the key variables of requirements explicit
parameters (attributes) of requirements
statements, we have improved not only
our understanding of key parametric
relationships, but also the configurability
of those requirements for re-use. Re-
usable designs and design platforms arise
from the re-usability of requirements,
enhanced by this approach. This is
discussed further below.

Relational-Symbolic Duality. This
approach illustrates the underlying duality
of the representation of requirements in
symbolic (for example, prose or equations)
versus relational (for example, graphical

or relational models) form, as further
discussed in Schindel (1997), Hayakawa
(1990), Chomsky and Piaget (1980), Whorf
(1956), and Marcus (2001).

WHAT IS LEFT? THE NON-PROSE PART OF
REQUIREMENTS MODELS

In this paper and the systems
engineering methodology it references
(Schindel et al. 2002) we consider prose
requirements statements to be a part of, but
not all of, a total model of requirements.
The referenced methodology grew out of
research seeking the minimal information
necessary to describe a system (Schindel
2002). Having clarified above the role of
prose requirements statements as one
formal part of a total requirements model,
it of interest to ask: What is the rest of the
requirements model? Why is more needed
than the requirements prose alone, if such
prose describes all the I/O relationships?

Additional Metamodel Components.
While this issue would ultimately take
us on a trip through modelling that goes
beyond the scope of this paper, it is inter-
esting to briefly see the roles of the rest
of a requirements model with respect to
that of the prose requirements statements
alone. The following additional model
components, summarized by Figure 7 and
described in Schindel (2002) are also need-
ed to complete the requirements model,
and they answer the listed requirements

Atmosphere Vegetation

Bystander

Compost
PileOperator

Operator
Access
System

Power
Subsystem

Cutting
Subsystem

Storage
Subsystem

Carriage
and Drive

Subsystem

Terrain Obstacle

Fueling
System

Thermal Hazard
Energy

Exhaust Gas
Cutting Power

Cu
tti

ng
 C

on
tro

ls

Po
we

r C
on

tro
ls

Steering
Controls

Lawn Grass

Leaked Therm
al Energy

Propulsion
Power

Lawn Grass

Lawn Grass

Shearing Force

Ejected MatterFuel

Traction Force Bump Force

Operating Command
Status Feedback

Terrain Appearance

Obstacle Appearance

Atmospheric Air
Lawnmower System

Figure 6. Logical architecture – partitioning of Figure 4

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

32

questions, supplementing the requirements
statement prose:

1. Domain Model: What is environ-
ment of the subject system? With
what external systems (actors) does
it interact, through what external
interfaces? What are the key relation-
ships of this domain? What external
interactions are eligible to be charac-
terized by, and must be covered by,
prose requirements statements?

2. Stakeholders and Needs Model: What
are the primary stakeholder roles
played by people or organizations
with a stake in the system, and what
are their (voice of the stakeholder)
needs?

3. Feature Model: How are the be-
haviours of the system organized with
respect to the values of its stake-
holders? What attributes describe
these values in stakeholder terms?
These are the stakeholder language
behaviours eligible and required to be
technically characterized by require-
ments statement prose.

4. State Model: How do the behaviour
functional relationships between the
subject system and its environment
change modalities in the presence of
different environmental situations
(states)? What is the temporal model
of the environment, and when (with
respect to that temporal situational
model) do different requirements
apply?

5. Functional Interaction Model: What
is the organization of the technical
physical interactions of the system
with its environment? How are these
interactions described by the in-
put-output relationships described by
the prose requirements? What are the
key technical attributes describing this
behaviour, and how are these coupled
to the stakeholder value-based feature
attributes?

6. Logical Architecture Model:
How is the externally-viewed
functional interactive behaviour
of the system decomposed and
organized by partitioning it into a
logical architecture of behaviour?
This partitioning describes the
decomposition and derivation of
lesser scope detailed requirements.

These additional requirements model
components provide context and fill out
the formal meaning of the requirements
statements that are embedded into them.
For example, the connection of the require-
ments statements to the state model of (4)
above illustrates the embedding recently
described in Daniels and Bahill (2004).

Still other components of this metamodel
relate these requirements to system design,
verification, etc. This overall metamodel is
related to, although more abstracted than,
the AP233 metamodel described in AP233
(2004).

PATTERNS: REUSABLE, CONFIGURABLE
MODELS OF REQUIREMENTS

Reusable designs are possible only
because of reusable requirements — some
commonality of needs across different
market segments, customers, applications,
product lines, or sub-systems. Patterns are
re-usable models. While first popularized
in some domains for design patterns (Gam-
ma et al. 1995, Alexander et al. 1977), they
are of interest as patterns of requirements.

The embedding of parameterized re-
quirements statements in overall require-
ments models described in this paper, along
with the other aspects of the object oriented
metamodel of Figure 7, create a modelling
framework that enables pattern-based sys-
tems engineering (Schindel 2002, Schindel
and Smith 2002). This approach introduces
patterns as re-usable models, cast in the
metamodel of Figure 7.

Using this approach, Figure 8
illustrates the process by which patterns
of requirements and designs for generic
systems can then be configured or
specialized into individual product line
families, and ultimately individual product
systems. This approach has been applied
in several commercial off the shelf (COTS)
product line enterprises, to enhance COTS
portfolio engineering and planning. This
approach also facilitates the ongoing

System

System of
Access

State
Feature

Function

Functional
Role

Interface

Input–
Output

Design
Component

attribute

attribute

attribute

attribute

attribute

attribute

(physical system)

(logical system)

attribute

attribute

attribute

Figure 7. Summary of the larger systems engineering metamodel

expression of organizational learning
in the form of updates and refinements
to “uncovered” patterns. A particularly
striking benefit of this approach is that it
allows large organization practitioners who
are less skilled in “clean sheet” original
modelling to gain the benefits of model-
based engineering. This is accomplished by
teaching larger groups the generic system
pattern models of the enterprise, for their
configuration and use. We have found this
is more easily learned by larger groups than
abstract modelling methodologies.

RESULTS AND CONCLUSIONS
In conclusion:
1. Prose requirements statements have

an important role to play as a part
of future model-based requirements
data structures, as generalizations
of transfer functions. This unifies a
traditional requirements-writing skill
with emerging model-based engi-
neering techniques.

2. Requirements statements can be writ-
ten in every-day natural language to
explicitly refer only the system inputs,
outputs, relationships between them,
and parametric attributes of those
relationships.

3. This improves the ability to write,
understand, inspect, and use prose
requirements statements, and im-
proves the usual discipline of writing
requirements statements, while
maintaining traditional principles of
requirements.

4. This approach also unifies the incor-
poration of requirements prose with

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

33

System

System of
Access

State
Feature

Function

Functional
Role

Interface

Input–
Output

Design
Component

attribute

attribute

attribute

attribute

attribute

attribute

(physical system)

(logical system)

attribute

attribute

attribute

System

System of
Access

State
Feature

Function

Functional
Role

Interface

Input–
Output

Design
Component

attribute

attribute

attribute

attribute

attribute

attribute

(physical system)

(logical system)

attribute

attribute

attribute

System

System of
Access

State
Feature

Function

Functional
Role

Interface

Input–
Output

Design
Component

attribute

attribute

attribute

attribute

attribute

attribute

(physical system)

(logical system)

attribute

attribute

attribute

Uncover
Pattern

Harvest
Pattern

Generic
System
Pattern

Product Lines or
System Families

Individual Product
or System Configurations

Reusable patterns, configurable
and specializable, that include
both requirements and design.

Figure 8. Patterns are configurable, re-usable models of requirements and designs

other forms of input-output relation-
ships, including equations, tables,
graphs, and other relations.

5. This approach also improves the
ability to create requirements
patterns—libraries of configurable,
re-usable requirements, improving
the performance of the engineering

process across larger product line and
COTS enterprises.

6. Automated modelling and require-
ments tools can increase in their
capabilities using this paradigm. We
have applied this approach using the
systems engineering and modelling
tools of a number of tools suppliers.

7. Less experienced engineers can apply
these concepts to improve their
requirements writing and model-
ling. We have successfully taught
this approach to undergraduate and
graduate engineering students, as well
as practicing engineers in commercial
and mil-aero organizations.

REFERENCES
 ■ Alexander, C., S. Ishikawa, I. Fiksdahl-King, and S. Angel.

1977. A Pattern Language: Towns, Buildings, Construction.
New York, US-NY: Oxford U. Press.

 ■ AP233 (ISO 10303). 2004. Web Site, https://step.nasa.gov/ .
 ■ Ashenden, Peter J. 1996. The Designer’s Guide to VHDL., San

Francisco, US-CA: Morgan Kaufmann Publishers, Inc.
 ■ Booch, G., J. Rumbaugh, and I. Jacobson. 1999. The Unified

Modelling Language User Guide. Reading, US-MA: Addison
Wesley.

 ■ Buede, Dennis M. 2000. The Engineering Design of Systems:
Models and Methods. New York, US-NY: John Wiley & sons,
Inc.

 ■ Carnap, Rudolf. 1958. Introduction to Symbolic Logic and Its
Applications. New York, US-NY: Dover Publications.

 ■ Chomsky, N., J. Piaget, et al. 1980. Language and Learning:
The Debate Between Jean Piaget and Noam Chomsky. Edited
by Massimo Piattelli-Palmarini. Cambridge, US-MA: Harvard
University Press.

 ■ Chung, L., B. A. Nixon, E. Yu, and J. Mylopoulos. 1999. Non-
Functional Requirements in Software Engineering. Springer
Publishing.

 ■ Churchill, Ruel V. 1958. Operational Mathematics. New York,
US-NY: McGraw-Hill Book Company.

 ■ Clausing, D., and R. Hauser. 1988. “The House of Quality.’’
Harvard Business Review, MayJune.

 ■ Daniels, J., and T. Bahill. 2004. “The Hybrid Process That
Combines Traditional Requirements and Use Cases.” Systems
Engineering 7 (4): 303-319.

 ■ Escher, M. C. 1992. M. C. Escher: The Graphic Work. Benedikt
Taschen Verlag Publishers.

 ■ Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, US-MA: Addison-Wesley.

 ■ Glasgow, J., N. Hari Narayanan, and B. Chandrasekaran, eds.
1995. Diagrammatic Reasoning: Cognitive and Computational
Perspectives. Cambridge, US-MA: MIT Press.

 ■ Hamilton, William Rowan. 1834. “On A General Method in
Dynamics.” Philosophical Transactions of the Royal Society Part
II: 247-308.

 ■ Hayakawa, S. I. 1990. Language in Thought and Action. Fifth
Edition. New York, US-NY: Harcourt Brace Jovanovich.

 ■ INCOSE MBSE. 2004. INCOSE Model Driven System Design
Working Group web site, http://www.incose.org/practice/
techactivities/modelingtools/mdsdwg.aspx .

 ■ Karayanakis, Nicholas M. 1993. Computer-Assisted Simulation
of Dynamic Systems with Block Diagram Languages. Boca
Raton, US-FL: CRC Press, Inc.

 ■ Landau, L. D., and E. M. Lifshitz. 1976. Mechanics. Third
Edition. From Course of Theoretical Physics, Volume 1. Oxford,
GB: Elsevier Science Ltd.

 ■ Marcus, Gary F. 2001. The Algebraic Mind: Integrating
Connectionism and Cognitive Science. Cambridge, US-MA:
MIT Press.

 ■ Mellor, S., and M. J. Balcer. 2002. Executable UML: A
Foundation for Model-Driven Architecture. Boston, US-MA:
Addison-Wesley.

 ■ Newton, Isaac. 1668. Mathematical Principles of Natural
Philosophy. trans. and ed. by Andrew Motte, 1729; rev. by
Florian Cajori, 1934 Berkeley, US-CA: University of California
Press, Berkley, US-CA.

 ■ Oliver, David. 1999. Engineering Complex Systems. New York,
US-NY: McGraw-Hill.

 ■ Pinker, Steven. 1994. The Language Instinct: How the Mind
Creates Language. New York, US-NY: William Morrow & Co.

 ■ Schindel, W., and V. Smith. 2002. “Results of Applying a
Families-of-Systems Approach to Systems Engineering of

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

34

Product Line Families.” SAE International, Technical Report
2002-01-3086, November.

 ■ Schindel, William D. 2022. “Does Our SE House Have a
Foundation?” INCOSE Crossroads of America Chapter
technical program presentation, Peoria, US-IL, 22 May.

 ■ Schindel, William D. 1996. “System Engineering: An Overview
of Complexity’s Impact.” SAE International, Technical Paper
962177, October.

 ■ Sussman, G. J., and J. Wisdom. 2001. Structure and
Interpretation of Classical Mechanics. Cambridge, US-MA:
MIT Press.

 ■ SysML Partners. 2004. Web Site, http://www.sysml.org/ .
 ■ Whorf, Benjamin Lee. 1956. Language, Thought, and Reality:

Selected Writings of Benjamin Lee Whorf. John B. Carroll,
editor. Cambridge, US-MA: MIT Press.

 ■ Zadeh, L. A. 1965. “Fuzzy Sets.” Information and Control 8:
338-353.

ABOUT THE AUTHOR
William D. Schindel is president of ICTT, Inc., a systems

engineering company, and the developer of the Systematica™
methodology for model and pattern-based systems engineering.
His 35-year engineering career began in mil/aero systems with
IBM Federal Systems, Owego, NY, included service as a faculty
member of Rose-Hulman Institute of Technology, and founding
of three commercial systems-based enterprises. He has consulted
on improvement of engineering processes within automotive,
medical/health care, telecommunications, aerospace, and
consumer products businesses. Schindel earned the BS and MS in
mathematics, and was awarded the Hon. D. Eng by Rose-Hulman
Institute of Technology for his systems engineering work.

UML and SysML are trademarks of the Object Management
Group, Inc. Systematica and Uncover the Pattern are trademarks
of System Sciences, LLC.

Supported by

The INCOSE Professional Development Portal (PDP)
is a comprehensive solution for Systems Engineers
and other professionals who want to enhance their

systems engineering knowledge and skills.

www.incose.org/pdp

International Council on Systems Engineering
A better world through a systems approach / www.incose.org

®

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

35

“SOFT” HUMAN REQUIREMENTS: THE ENGINEER’S CHALLENGE

 ABSTRACT
Traditionally, engineering encourages requirements statements that are objective, testable, quantitative, atomic descriptions of
system technical behavior. But what about “soft” requirements? When products deliver psychologically or emotionally based
human experiences, subjective descriptions may frustrate engineers. This challenge is important for products appealing to senses
of style, enjoyment, fulfillment, stimulation, power, safety, awareness, comfort, or similar emotional or psychological factors.
Automobiles, buildings, consumer products, packaging, graphic user interfaces, airline passenger compartments and flight decks,
and hospital equipment provide typical examples. This paper shows how model-based systems engineering helps solve three
related problems: (1) integrating models of “soft” human experience with hard technical product requirements, (2) describing
how to score traditional “hard” technology products in terms of “fuzzier” business and competitive marketplace issues, and (3)
coordinating marketing communication and promotion with the design process. The resulting framework integrates the diverse
perspectives of engineers, stylists, industrial designers, human factors experts, and marketing professionals.

Feelings and Physics:
Emotional, Psychological,
and Other Soft Human
Requirements, by
Model-Based Systems
Engineering

William D. Schindel, schindel@ictt.com
Copyright © 2006 by William D. Schindel. Published and used by INCOSE and affiliated societies with permission.

Human-Experienced Quali-
ties. Traditional engineering
methods encourage us to write
requirements statements that

are objective, testable, quantitative, atomic
descriptions of desired system technical
behavior. It has been shown (Schindel 2005)
that such requirements prose may be di-
rectly generated by model-based methods.
This paper explores the opposite direction:
Requirements for products and systems
that interact with people are frequently
expressed in terms of human-experienced

qualities. For some system products (for
example, aircraft passenger compartments,
furniture, tools, entertainment systems,
clothing), these may be among their
most important requirements. For other
products (for example, control systems,
manufacturing processes, buildings), these
requirements can be at least a critical subset
of the total requirements.

The descriptions of such “soft” qualities
often use nomenclature and ideas of
psychology, emotion, and other human-
based terminology, and may originate from

non-technical laymen, or from technical
specialists who study human nature instead
of engineering and physics. This can leave
the engineer writing technical product
or system engineering specifications in a
dilemma. How does one treat seemingly
“soft” requirements of this type seriously,
link them to technical designs, and subject
them to formal and effective validation and
verification?

The Challenge to Engineers. These
questions frequently lead to uncertainty or
frustration on the part of the engineer, or a

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

36

sense that requirements of this sort cannot
be treated the same as “hard technical”
requirements, such as one finds in
interactions between non-human systems.
How is an engineering-trained designer
to accommodate requests that a product
should make its human user “excited”,
“fulfilled”, “undistracted”, or “uplifted”?
How can engineers in such cases feel that
their work is conducted in a technically
sound, systematic, and optimized fashion?

Human-based requirements of this sort
are essential in the design of consumer
products, military and commercial aircraft
and vehicles (which interact with pilots and
operators), therapeutic devices and sys-
tems, and many other products. Techniques
such as quality function deployment (QFD)
(Clausing et al. 1988) and axiomatic design
(Suh 2001) express certain relationships
about soft requirements, but may do so
without fully communicating the human
factors specialist’s understanding, and their
full integration into model-based systems
engineering processes is not always clear.

Industrial Designers and Archi-
tects. The technical design community
is not without success in the design of
human-oriented systems. The work of
Raymond Loewy (1998), Henry Dreyfuss
(Flinchum 1997), Louis Sullivan (1956),
Frank Lloyd Wright (Pfeiffer 1993), and
other industrial designers and architects
reveals a rich heritage of design for human
experience. The work of these pioneers
illustrates intuitive genius but may not fully
reveal a systematic process joining human
experiential needs with technical require-
ments and designs. How does the systems
engineer make this connection?

Contributors from Other Fields. The
systematic study of human-experienced
qualities and related behaviors is the
domain of other disciplines originating
outside engineering. The modern analytical
expression of human psychological systems
dates back to at least William James (1950),
Sigmund Freud (Hutchins 1952), Carl
Jung (DeLaszlo 1993), and their followers,
with the introduction of the logical system
concepts such as the unconscious and con-
scious, or ego and id, etc. For these pioneers,
the systems described did not necessar-
ily have a claimed physical basis—in the
terminology of methods described herein,
they were “logical” systems not “physical”
systems. With the eventual emergence
of the disciplines of neuroscience and
cognitive psychology in the late twenti-
eth century, researchers such as Domasio
(1994), Crick (1994), Edelman (1989), and
others explored more deeply the possible
physical mechanisms for consciousness,
emotion, and their connection to cognitive
processes. Studies of the physical basis

of human consciousness, emotion, and
cognition have most recently moved to the
center stage of hard-science sub-disciplines
of neuroscience. Arguments about these
kinds of logical-physical system associa-
tions in humankind are much older. They
include the mind-body problem, debated
by Descartes (Gaukroger 1995) and others
as one of philosophy’s central questions.
Fortunately for the product design engineer
on a commercial schedule, we need not an-
swer these questions of the ages to practice
an effective system design approach.

Other related work may be found in
model-based systems engineering (AP233
2004, INCOSE MBSE 2004, SysML Part-
ners 2004), quality function deployment
(QFD) (Clausing et al. 1988), axiomatic
design (Suh 2001), and fuzzy set theory
(Zadeh 1965). The framework described
here acknowledges and relates these and
other conceptual ancestors.

THE APPROACH IN A NUTSHELL
This approach describes an integrated

model-based conceptual framework in
which product engineers, human fac-
tors experts, marketing communication
specialists and product planners can work
productively together as a team, linking and
coordinating their various needs and solu-
tions with improved consistency—while
still using different perspectives, tools, and
concepts natural to their specialties. We
will summarize how “soft” requirements
of actual or promoted human experience
can be formally described in model based
systems engineering (MBSE) models, using
a specific systems engineering methodolo-
gy (Schindel et al. 2002).

This approach uses the MBSE concept of
logical systems to represent behavior-based
knowledge of softer human dimensions,
avoiding the conundrums of the physical
basis of mind and experience. The very
same MBSE tools are also used to describe
the “hard” behavioral requirements of the
engineered product with which the human
interacts. These two model segments are
brought together in a single interacting
system domain model, to reveal their
interdependencies, consistencies, and
inconsistencies. Marketing and human
factors specialists can “own” the human
part of this model, and product engineers
can “own” the technical product part of the
model. The resulting unified framework
provides a more productive means for these
two different professional groups to work
together to reach a common understanding
of product requirements and opportuni-
ties to meet human perceived experience
objectives.

In further extensions also described
here, the same principles are additionally

shown to address other types of “soft”
problems that apply even to “hard”
technical products: competitive choice,
marketable features, product positioning,
and promotional programs.

INTRODUCTORY PRINCIPLES AND MODELING
TECHNIQUES

Modeling Interacting Systems. The
perspective here is that requirements of all
types ultimately connect to external physi-
cal interactions between systems (Schindel
2005). We say that systems “interact” when
they can impact each others’ (physical)
states, through the (physical) exchange of
energy, mass, force, or information (all of
which are modeled as “input-outputs”).

Human
Having

Experience

Extended
Product
System

Input–Output

Input–Output

Figure 1. The perspective of human-
product interaction

Such a “physics-like” interaction perspec-
tive is summarized at the most abstract level
by Figure 1, in which the interacting systems
are defined as follows:

1. Extended Product System: Includes
the subject system, for which we will
specify requirements and design.
It may be a manufactured product,
a service-providing system, or any
system. It is called “extended” because
it also includes other systems in the
product’s domain (environment),
with which the human and/or
product also interacts.

2. Human Having Experience: This is a
human being that interacts with the
extended product system, for whom
we want certain experience-based
outcomes to occur.

Modeling “Soft” Qualities of Human
Experience. This “physics” oriented model-
based strategy for the technical product
is extended to soft human experience
issues by taking advantage of two key
observations:

1. To understand “soft” product require-
ments based on human emotional
or psychological experiences, we
must model the human, not just the
product.

2. These models are about externally-
observed human behavior, not

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

37

Human Having Experience

Environment

EgoId

Higher Mental
Processes

Lower Mental,
Sensory, and Motor

Processes

Figure 2. Logical subsystems organize externally visible behavior

the internal physical basis of
that behavior — we don’t have to
understand the physical basis of mind
to get the practical results needed for
the development process.

This methodology uses the concept of
logical systems to model externally visible
behavior— including human behavior as
well as engineered systems behavior. This
approach allows the introduction and use
of concepts familiar to the psychologist, but
usually considered by the engineer to be
“soft” in nature when applied to humans. It
then allows these to be linked in an unbro-
ken model chain to hard technical require-
ments on engineered product interactions.

The following definition is provided by
the referenced methodology: A logical
system is a system that is defined based
upon its externally visible behavior,
not its physical identity. “Externally
visible behavior” means that which can
be “seen” by other systems through
physical interactions with an observed
system. This means that we can model
logical systems without knowing their
physical implementation, much as early
psychologists (for example, Freud)
described theories of human psychological
structure without need to describe their
physical basis. Figure 2 shows a simplistic
model illustrating this approach.

Freud was not required to explain the
physical basis of id and ego in order to use
these concepts to advance the description
of human psychology. The point here is
not whether Freud’s early models were “cor-
rect” (the reader can substitute a favored
model), but rather that these models could
be described and externally tested without
having to allocate the logical systems of the

technology of the product system.
4. Lower Level Neural Processing:

Performs unconscious processing
important for regulating bodily
processes, survival, and other base
functions.

5. Emotion System: Interacts with all
levels of conscious and unconscious
processes to provide for overall regu-
lation of same.

6. Attention Management System:
Manages the resources of conscious
level processing to direct limited
attention capacity to the highest value
perceived situations.

The specific model used above is not the
main point—those expert in current or spe-
cialized psychological models can replace
the example shown with their own logical
constructs fit to local needs. The key point
here is modeling of human behavioural
components for integration with product
performance—all in a single integrated
framework that enables different profes-
sionals to work together more successfully.

By the time interactions are shown
between the human user and the product
system, they include representation of
physical input-outputs:

 ■ Information:
• Visual (appearance)
• Tactile (feel)
• Olfactory (smell)
• Audible (sound)
• Thermal (heat and cold)
• Informative Forces (orientation,

pressure, acceleration)
 ■ Forces (physical manipulation)
 ■ Mass Transfer (ingestion or secretion/
excretion of mass)

 ■ Thermal Energy (heat transfer).

MODELING THE BEHAVIOR OF THE PRODUCT
A similar approach is used to model

the logical architecture of behavior of the
product, including its logical subsystems,
as shown in Figure 4. It can be seen that
Figures 3 and 4 alternatively “telescope” the
product versus human behavioral models,
ready for integration together.

The model of the product and human
behaviors consist of more than just collab-
oration diagrams of their logical systems.
Other parts of the associated meta-model
include features, (functional) interactions,
states, and interfaces. For purposes of this
paper, we will focus on the subset of the
meta-model concerned with describing
the quantitative relationships between
the attributes of the person, engineered
system, and environment. This requires
an understanding of models of functional
interactions, their logical roles, and the
quantitative coupling relationships between

model to particular physical mechanisms.
Such models express the logical archi-
tecture of behavior by partitioning that
behavior into interacting logical subsystems
that are nothing more than components of
externally verifiable behavior.

For example, Figure 3 represents
the relatively more elaborate ideas that
behavior can be partitioned to include:

1. Hierarchical behaviors concerned
with basic functioning, higher level
planning, aspirations and values
(hierarchy of needs was described by
Maslow (1962));

2. Attention-focusing systems that regu-
late the application of finite informa-
tion processing resources to priority
issues (LaBerge 1995);

3. Emotional systems that span multiple
levels to regulate behavior globally
(Damasio 1994);

4. One’s own image of oneself, as well
as one’s environment—also including
how one thinks of the product and
one’s own use of it. (Trout et al. 1981).

The logical systems shown in Figure 3
accordingly model the following compo-
nents of externally visible behavior:

1. Sensory Subsystem: Converts “hard”
external physical interaction inputs
into other representations.

2. Structural and Lower Motor Subsys-
tem: Converts internal signals in the
nervous system into external physical
output motions or dynamic or static
forces.

3. Self-Environment Modeled System:
Maintains an internally perceived
model of the self (the human’s
perception of self) and of its inter-
actions with its environment. This
environment includes in particular
the product system. These logical
systems are called “modeled” to
differentiate them from the “real” ex-
ternal systems—they are the human’s
constructed, subjective perceptions of
those systems and the self. For some
products, the modeled attributes of
the self-environment modeled system
of Figure 3 include some of the most
important customer satisfaction
attributes to be supported by the hard

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

38

Human Having Experience

Higher Aspiration and
Values System

Planning System

Sensory
Subsystem

At
te

nt
io

n
M

an
ag

em
en

t S
ys

te
m

Em
ot

io
na

l S
ys

te
m

Modeled
Self

Modeled
Product
System

Extended Product
System

Other
Modeled

Environment

Self–Environment Modeled System

Structural and
Lower Motor
Subsystem

Functional Satisfaction System

Lower Level Neural Processing

Aspiration Satisfaction

Functional Satisfaction

Aw
ar

en
es

s

Jo
y

Figure 3. More elaborate logical
behavioral models may be constructed

the attributes that parameterize these roles,
discussed in the next section.

ATTRIBUTE COUPLINGS: MODELS OF INTER-
DEPENDENCIES

Integrating the two parts of the model
now enables more fully expressing how
the structure of “soft” requirements on the
product is dependent upon the structure of
the human behavior model. For a human
directly interacting with the product (see
later herein for indirect cases), the chain of
dependencies is as follows:

1. Feature and Feature Attributes: The
“soft” requirements are imposed by
the human experienced (subjective,
psychological, emotional) outcomes
we seek to optimize by the behavior
of the product. The most “outcome
oriented” of these characteristics
important to product stakeholders
will eventually be modeled as the
features and feature attributes of the
product — even though they describe
human experienced outcome states.

(See Figures 5 and 6.) This is because
the product’s attributes express
how well it satisfies associated soft
human requirements. All features
and feature attributes are associated
with feature stakeholders and are
always described in the language of
their stakeholders, not the technical
requirements language of designers.
Soft human requirements therefore
are described in the language of the
human stakeholder or specialists in
human studies.

2. Functional Roles and Role Attributes:
The features are associated with
the functional interactions through
which they are experienced. These are
physical interactions of the human
and product for the cases discussed
here, during which physical input-
outputs are exchanged between the
human and product. These functional
interactions are the systems
engineering “glue” that ties together
the human and product subsystems.
These interactions are in turn broken

into multiple functional roles that are
allocated individually to the human
and product (or to other domain
systems involved in the interaction).
These roles are the logical systems
described earlier — the blocks in
Figures 3 and 4. These roles represent
the transformation of inputs into
outputs, shown in those diagrams.
The input-output transformations
can be quantitatively described
by prose statements, empirical
graphs or tables from experience,
by equations, by rules of thumb,
results of focus groups or surveys, or
other transformation descriptions,
shown as requirements statements
in Figure 5. These transformation
descriptions are parameterized by
attributes of the roles shown in
Figures 3 and 4. These are “knobs”
on the transformations that “tune”
their input-output characteristics.
The roles they parameterize serve to
package, organize, and express the
development team’s best available
(hopefully advancing) current
knowledge, whether empirical or
otherwise, as explicit intellectual
assets (IP). The coupling of feature to
functional interaction to functional
role spans and integrates the two
worlds of soft human experienced
qualities and hard technical
requirements.

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

39

3. Design Components and Design
Attributes: The architecture of the
product design is expressed by the
(physical) design components and
their physical relationships, onto
which are allocated the functional
roles (behaviors). The design is
further parameterized by the
attributes of the (physical) design
components, themselves tuned to
best meet the role-based behavioral
requirements.

4. Attribute Couplings: The dependen-
cies of the three types of attributes
shown in Figure 5 are expressed by

attribute couplings, also summarized
there. Design component attribute
values are chosen to satisfy technical
requirements expressed through
functional role attribute values. These
role attribute values are in turn cho-
sen to satisfy feature attribute values
that express stakeholder needs. These
couplings express the dependency of
hard technical requirements (as well
as design) upon soft human experi-
enced aspects. This also shows how
to embed techniques such as QFD
(Clausing et al. 1988) in the larger
framework of model-based systems

engineering. It explains the ideas
behind the parametric requirements
models supported by SysML (SysML
Partners 2004).

A SIMPLIFIED EXAMPLE
This process ultimately leads to some

quantitative expression of the organization’s
best known (whether empirical, analytical,
rule of thumb, or other form of) knowledge
about the coupling of subjective feature at-
tribute outcomes to technical role attribute
values. As a simple example, the “A Matrix”
of Figure 7 (see also 5 and 6) expresses the
organization’s knowledge that a number of

Figure 4. Product system domain and logical architecture

Atmosphere Vegetation

Bystander

Compost
Pile

Operator

Operator
Access
System

Power
Subsystem

Cutting
Subsystem

Storage
Subsystem

Carriage
and Drive

Subsystem

Terrain Obstacle

Fueling
System

Thermal Hazard
Energy

Exhaust Gas
Cutting Power

Cu
tti

ng
 C

on
tro

ls

Po
we

r C
on

tro
ls

Steering
Controls

Lawn Grass

Leaked Therm
al Energy

Propulsion
Power

Lawn Grass

Lawn Grass

Shearing Force

Ejected MatterFuel

Traction Force Bump Force

Operating Command

Status Feedback

Terrain Appearance

Obstacle Appearance

Atmospheric Air
Lawnmower System

Extended Product System

Human Having Experience

System

System of
Access

State

Metamodel

requirements design

Matrix A
Coupling

Matrix B
Coupling

Feature

Functional
Interaction

Functional
Role

Interface

Requirement
Statement

Input–
Output

Design
Component

attribute

attribute

attribute

attribute

attribute

attribute

(physical system)

(logical system)

attribute

attribute

attribute

attribute

System

Feature

Requirement
Statement

Design
Component

(Functional)
Interaction

(Functional)
Role

attribute

attribute attribute

attribute

Figure 5. Tracing a subset of the metamodel

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

40

Steering Sensitivity

Se
ns

e
of

 C
on

tro
l

Operatin
g Speed

Expressing
Couplings

APPLICATION ENVIRONMENT

Sense of

Control

Enjoyable
Mowing Feature

Market Segment
Fit Feature

Operator

Fatigue

Operator

Com
fort

Application

Positioning

Purchase
Price

Seating System

Steering Subsystem

Propulsion System

Terrain Roughness
Steering Tactile

Steering Sensitivity
Cost

Shock Absorbence
Seat Cushioning

Cost
Max Accelaration

Max Mowing Speed
Braking

Cost

X

X

X

X

X

X
X

X
X
X

X

X
X

X

X
X

X
X

X
X

X
X
X

Functional
Roles

Feature
Attributes

Attribute
Couplings

Role
Attributes

Features

Figure 7. Simple example of attribute coupling Matrix A (features-roles)

subjective human operator feature attri-
butes for a lawnmower system are coupled
to more technical role attributes describing
that product’s hard technical behaviour.
The “X” indications in this matrix represent

knowledge of couplings. This may include
several levels of knowledge:

1. The simple (binary — yes or no)
awareness that there is any significant
coupling at all;

2. Awareness of the strength of the
coupling;

3. More quantitative knowledge of the
coupling (graphs, prose, simulations,
tables, field surveys, rules of thumb,
standards, etc. – in each case relating
the coupled attributes).

In this example, a graph expresses
knowledge of the relationship between the
lawnmower operator’s subjective sense
of control (a “feeling”) and the steering
sensitivity and operating speed of the
mower. Instead of a graph as shown, a table
of values might have appeared. Still another
possibility might have been a reference to
a past study or to a person known by the
organization to be the current expert on
the subject. No matter what the form of the
representation of the quantitative coupling
relationship, the same framework can be
used: couplings of attributes on stakeholder

Figure 6. Attribute coupling framework

Feature (Enjoyable
Mowing Feature)

Attribute Dependency
(Coupling, at system
development time)

System properties
whose static values
determine the dynamic
characteristics of the
system

Physical input-output
exchanged physically
between interacting
systems

Subject System (e.g., Mower)Human (e.g., Mower Operator)

Functional
interaction
(e.g., Steer)

Role (Steering
Subsystem)

Role (e.g.
Motor System)

Role (Steering
Planner)

Physical
Design

Component
(Push Rod)

Attribute

Attribute

AttributeAttribute

Attribute

Supports

A Matrix
Coupling

Has Role

Steering
Effort

Attribute
Coupling

Plays
Role

Plays
Role

Performs
Role

B Matrix
Coupling

I/O (Steering
Resistance Force)

I/O
(Steering
Decision)

I/O
(Steering Force)

Has Role

Has Feature

I/O

Attribute

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

41

features (including soft/subjective human
experience outcomes) to technical role
requirements attributes — a universal (and
QFD-like) paradigm.

The actual prose form (input-outputs,
attributes, relationships) of associated
model-based requirements statements(s) is
described in detail in (Schindel 2005) — the
current paper shows how such prose
requirements apply when models describe
psychological or human factors, improving
requirements effectiveness. As shown in
that reference publication, requirements
in this form are less ambiguous, easier to
inspect for completeness, and easier to test,
because they are embedded in and a part of
explicit semantic models. This extends the
use of prose-only glossaries to “explicate”
the meaning of requirements statements
using more descriptive models.

This approach also enhances validation
and verification of human-oriented aspects.
The validation of the feature-role couplings
summarized by the A Matrix checks our
understanding of human behaviour—not
that of the product, but still essential to
validating its requirements— and can
frequently be addressed through simulation
(or prototyping or other approach) of the
product to humans. The verification of the
logical role-design component couplings
summarized by the B Matrix verifies that a
product design meets the technical input-
output (black-box) requirements. Finally,
an overall validation of a real designed
product in the hands of the human
combines these two in an end-to-end test.
Separating them improves understanding
of both the stakeholders and the product.

EXTENSIONS: ALL SYSTEMS ARE SOFT
It turns out that the above techniques are

important for designers of all systems — not
just those who design direct human-
interaction types of products.

All Engineered Systems Have Human
Stakeholders. Many products and systems
don’t have direct interactions with humans
while performing their primary mission,
thereby seeming to avoid the human
experienced qualities challenges described
above. A submersible pump in a deep well,
an orbiting surveillance system, an under-
sea communication cable, and other even
less isolated systems may conduct their
primary missions without direct human
interactions (notwithstanding the parts
of their life cycles involving direct human
interaction for fabrication, installation, or
maintenance). Many such products primar-
ily interact with other hard technology sys-
tems, instead of people, in performing their
primary mission. The engineer may believe
that the requirements of such systems are
easier to specify than those that directly

interact with humans, and their designers
may be envied by the designer who must
deal with more human-intensive systems.
Indeed, prose form technical requirements
for these systems may be generated by
physical interaction model-based means
(Schindel 2005).

However, to claim that this avoids human
factors challenges is to overlook a critical
commercial fact of life. All engineered
systems are created for some intended
purpose, and on behalf of some human
stakeholder, even if the stakeholder is not
a direct user of the system. Stakeholders
represent a form of market for the system
to be designed. Stakeholders or their
representatives may include purchasers,
shareholders, financiers, general
managers, sales organizations, customers
of customers, regulators, and others.
The “markets” they populate value those
systems on a relative scale, ranking some
products over others. The difference in
these valuations can spell the difference
between commercial success and failure
in competitive markets. The engineering
organizations of these businesses will
eventually discover that the judgments
rendered by such markets are themselves
something other than the objective stuff
of physics. The perceived value of a pump,
satellite, or cable includes subjective
judgments made by humans. The relative
utility of these systems is the subject of
utility theory (Bell et al. 1988, Keeney et
al. 1993, Nash 1950, von Neumann et al.
1953) which is itself embedded in the study
of human psychology and mathematics.
Every engineered system, no matter
how technical, is ultimately subject to
“soft” human judgments, and these are
overlooked at the peril of the designer.

All Engineered Systems Require “Life
Cycle Marketing Support.” Whether sold
into commercial markets or defended to
institutional administrators, every engi-

neered system requires marketing support
over its life cycle, including connecting
its engineering process to the “market-
place” for that system. The marketplace
description and advertising of commercial
consumer and industrial product and
service offerings have evolved in sophisti-
cation through over a century of modern
practice. Today, products are subject to “po-
sitioning” by planners, to occupy certain
“mental spaces” in the marketplace, with
respect to perceptions of competition, the
buyer’s self-image, and other factors (Trout
et al. 1981). Although one result of this
positioning effort is the content of product
advertising and promotional campaigns,
we are frequently reminded that our actual
engineered products need to back up (or
drive!) the claims of advertising with real
performance that is consistent with those
claims. We need assurance that our promo-
tional programs and product designs will
reinforce each other for an optimum use
of the assets employed. However, they are
described in the languages of very different
professions and organizations. As a result of
this built-in disconnection of perspective,
the disparity between “what engineering
designed”, “what marketing sold” and “what
the customer wanted” has become the
subject of popular cartoons. When product
positioning promotes various images of
a psychological nature using the power
of suggestion and association, how does
the product design engineer practically
incorporate these “requirements” into the
actual technical specification and design of
the product? We again have a case of “soft
versus hard” requirements.

All Product Stakeholders Eventually
Interact at Least Indirectly with the
Product. In systems engineering terms,
it may seem a long way indeed from the
physical aircraft to the aircraft company’s
shareholder, but their (indirect) physical
interaction is very real and important.

Human Having
Experience

Extended Product
System

Promotional
Advisory, and

Analysis System

Figure 8. Extensions to the abstract model of Figure 1

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

42

Without it, there would be no relationship
whatsoever between the price of company
shares and the performance of the aircraft.
Investors will indeed debate how “real” this
coupling is when they see peculiar share
price performance in comparison to the
product. But this equity market complexity
only serves to underline the points of this
paper concerning “soft” requirements. Were
a stakeholder to be totally isolated from
even indirect interaction with the product,
then by definition they would have no stake
in that product — a contradiction proving
the point.

We can now return to Figure 1, add
to it as Figure 8, and re-interpret it more
generally, to extend the methods described
in this paper:

1. Human Having Experience: This is
a human being that interacts even
indirectly (that is, through intermediate
people or other systems) with the subject
system within the extended product
system, for whom we want certain
experience-based outcomes.

2. Promotional, Advisory, and Analysis
System: This is a system that
communicates product-related usage
information to and from the human
user and product system (either one or
both). This is intended by the supplier
of the product system to (a) cause
selection and purchase of the product
system or the services it provides, (b)
communicate advice on how to use or

interact with the product system, and
(c) collect and analyze information
on how the user thinks about, selects,
or interacts with the product system.
(This “system” need not be high
technology in nature—it could be
based on mail telephone surveys, focus
groups, consumer observation, or
more sophisticated web sites or built-in
monitoring technologies.)

All human stakeholders in the subject
system are therefore included in this
definition. Every such stakeholder is
associated with features of the subject
system that represent the value-centric
outcomes that the stakeholder seeks from
the subject system. These are subject to the
same models and model coupling methods
as described earlier above.

The informational “messages” produced
by the promotional and advisory system
and consumed by the human user are
meant to establish the preliminary models
of the self-environment modeled system
even before experience with the product
system. The physical interactions with the
product system are required to reinforce
those same models.

PATTERNS: LEVERAGING EXPERTISE ACROSS
PRODUCT LINES

Understanding the soft requirements
of human stakeholders and how they
imply technical product requirements
is highly valuable to a competitive

organization, and not lightly accomplished.
The resulting knowledge represents
some of the most valuable intellectual
assets of the organization. Preserving
this information for repeated use across
different configurations of products or
systems in a large product line enterprise is
highly desirable. The models described in
this paper can be made to be configurable
across product lines or system families,
to meet differing market segment or
application requirements. (Refer to
Figure 9.) This leverages the knowledge
of the most expert players and makes it
available across the organization.

CONCLUSIONS AND RESULTS
Summarizing the results and conclusions:
1. Decomposed as described in this

paper, “soft” requirements can be
expressed in the form best-suited to
the human experienced disciplines
in which these arise (human factors,
marketing, psychology, consumer
research, cognitive science),
but directly coupled to “hard”
engineering requirements without
loss of fidelity. This aids both forms,
and unifies traditional disciplines for
soft requirements with both technical
requirements writing and model-
based development.

2. The shared understanding of multi-
disciplinary teams can be improved,
by better understanding the origin
of hard requirements in soft human

Lawnmower
System

Walk-
Behind
Mower

Self-
Propelled

Mower

Model M3
Push

Mower

Model M5
Self-Propelled

Mower

Model M11
Wide Cut Self

Propelled Mower

Model M17
Rear Engine

Rider

Model M19
Lawn

Tractor

Model M23
Garden
Tractor

Model M100
Auto Mower

Rear
Engine
Rider

Autonomous
Mower
System

Riding
Mower

Push
Mower Tractor

Figure 9. Patterns of soft and hard requirements, configurable across product lines

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

43

factors, and the form of their inter-
dependent coupling.

3. Expressing couplings to other
stakeholders, the same techniques
can be used to express all stakeholder
requirements, improving the under-
standing of stakeholder perspectives
by the technical design team.

4. This improves the ability to write,
understand, inspect, and use hard
requirements, and improves the usual
discipline of writing requirements
statements, while maintaining tradi-
tional principles of requirements.

5. This approach also improves the
ability to create requirements
patterns — libraries of configurable,
re-usable requirements, improving
the performance of the engineering
process across larger product line and
COTS enterprises.

6. The treatment of soft requirements by
methods such as QFD and axiomatic
design can be unified with the total
development process.

7. Automated modeling and require-
ments tools can increase in their
capabilities using this paradigm. We

have applied this approach using the
systems engineering and modeling
tools of a number of tools suppliers.

8. Less experienced engineers can apply
these concepts to improve their
requirements writing and model-
ing. We have successfully taught
this approach to undergraduate and
graduate engineering students, as well
as practicing engineers in commercial
and mil-aero organizations.

REFERENCES
 ■ AP233 (ISO 10303). 2004. Web Site, http://step.jpl.nasa.gov/

AP233/ .
 ■ Barberà, S., P. Hammond, and C. Seidl, eds. 2004. Handbook of

Utility Theory. ISBN: 1-4020-7965-6.
 ■ Bell, D. E., H. Raiffa, H., and A. Tversky, eds. 1988. Decision

Making: Descriptive, Normative, and Prescriptive Interactions.
New York, US-NY: Cambridge University Press.

 ■ Clausing, D., and R. Hauser. 1988. “The House of Quality.’’
Harvard Business Review, May/June.

 ■ Crick, Francis J., 1994. The Astonishing Hypothesis. Charles
Scribners.

 ■ Damasio, Antonio R. 1994. Descartes’ Error: Emotion, Reason,
and the Human Brain. Putnam.

 ■ De Laszlo, Violet S., ed. 1993. The Basic Writings of C. G. Jung.
New York, US-NY: Random House.

 ■ Edelman, Gerald M. 1989. The Remembered Present: A
Biological Theory of Consciousness. Basic Books.

 ■ Flinchum, Russell. 1997. Henry Dreyfuss, Industrial Designer:
The Man in the Brown Suit. New York, US-NY: Rizzoli
International Publications.

 ■ Gaukroger, S. 1995. Descartes: An Intellectual Biography.
Oxford, GB: Clarendon Press.

 ■ Hutchins, Robert M., editor. 1952. The Major Works of
Sigmund Freud. Great Books of the Western World, Vol. 54,
William Benton, Publisher.

 ■ INCOSE MBSE. 2004. INCOSE Model Driven System Design
Working Group web site, http://www.incose.org/practice/
techactivities/modelingtools/mdsdwg.aspx .

 ■ James, William. 1950. The Principles of Psychology. Volumes
1-2. Dover Publications.

 ■ Keeney, R. L., and H. Raiffa. 1993. Decisions with Multiple
Objectives: Preferences and Value Tradeoffs. New York, US-NY:
Cambridge University Press.

 ■ LaBerge, David. 1995. Attentional Processing: The Brain’s Art of
Mindfulness. Cambridge, US-MA: Harvard University Press.

 ■ Loewy, Raymond. 1998. Industrial Design. Overlook TP.
 ■ Maslow, Abraham H. 1962. Toward a Psychology of Being. D.

Van Nostrand Company.
 ■ Nash Jr., John F. 1950. “The Bargaining Problem.”

Econometrica 18: 155.
 ■ Pfeiffer, Bruce B., ed. 1993. Frank Lloyd Wright: Collected

Writings. New York, US-NY: Rizzoli International
Publications.

 ■ Piaget, Jean. 1971. Biology and Knowledge: An Essay on the
Relations Between Organic Regulations and Cognitive Processes.
Chicago, US-IL: The University of Chicago Press.

 ■ Schindel, W., and V. Smith. 2002. “Results of Applying a
Families-of-Systems Approach to Systems Engineering of
Product Line Families.” SAE International Technical Report
2002-01-3086, November.

 ■ Schindel, William D. 2005. “Requirements Statements Are
Transfer Functions: An Insight from Model-Based Systems
Engineering.” INCOSE 2005 International Symposium,
Rochester, US-NY, July.

 ■ Sullivan, Louis H. 1956. The Autobiography of an Idea. Dover
edition, New York, US-NY: Dover.

 ■ Suh, Nam P. 2001. Axiomatic Design: Advances and
Applications New York, US-NY: Oxford University Press.

 ■ SysML Partners. 2004. Web Site, http://www.sysml.org/ .
 ■ Trout, J. and A. Ries. 1981. Positioning: The Battle for Your

Mind. McGraw-Hill.
 ■ von Neumann, J., and O. Morgenstern. 1953. Theory of

Games and Economic Behavior. Princeton, US-NJ: Princeton
University Press.

 ■ Zadeh, L. A. 1965. “Fuzzy Sets.” Information and Control, 8:
338-353.

ABOUT THE AUTHOR
William D. Schindel is president of ICTT, Inc., a systems

engineering company, and developer of the Systematica™
methodology for model and pattern-based systems engineering.
His 36 year engineering career began in mil/aero systems with
IBM Federal Systems, Owego, NY, included service as a faculty
member of Rose-Hulman Institute of Technology, and founding
of three commercial systems-based enterprises. He has consulted
on improvement of engineering processes within automotive,
medical/health care, telecommunications, aerospace, and
consumer products businesses. Schindel earned the BS and MS in
mathematics, and was awarded the Hon. D. Eng by Rose-Hulman
Institute of Technology for his systems engineering work.

UML and SysML are trademarks of the Object Management
Group, Inc. Systematica and Uncover the Pattern are trademarks
of System Sciences, LLC

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

44

WHAT WOULD WE LIKE TO IMPROVE UPON

 ABSTRACT
Processes for system failure analysis (for example, FMEA) are structured, well-documented, and supported by tools. Nevertheless,
we hear complaints that FMEA work feels (1) too labor intensive to encourage engagement, (2) somewhat arbitrary in identifying
issues, (3) overly sensitive to the skills and background of the performing team, and (4) not building enough confidence of
fully identifying the risks of system failure. In fairness to experts in the process, perhaps such complaints come from those less
experienced — but even so, we should care how to describe this process to encourage better technical and experience outcomes.
This paper shows how model-based systems engineering (MBSE) answers these challenges by deeper and novel integration with
requirements and design. Just as MBSE powered the requirements discovery process past its earlier, more subjective performance,
so also can MBSE accelerate understanding and performance of failure risk analysis — as a discipline deeply connected within the
systems engineering process.

Failure Analysis: Insights
from Model-Based
Systems Engineering

William D. Schindel, schindel@ictt.com
Copyright © 2010 by William D. Schindel. Published and used by INCOSE with permission.

Challenges of Traditional Failure
Analysis Processes. Processes for
system risk and failure identifi-
cation, analysis, and planning are

well-known, documented, and frequently
supported by tools. These include failure
modes and effects analysis — FMEA (Dya-
dem 2002, 2003; ISO/IEC 2006, 2007; US
DoD 1980), fault tree analysis — FTA (Hyatt
2003), reliability centered maintenance
planning — RCM (Moubray 1997), process
hazards analysis — PHA (Hyatt 2003), and
hazards and operability analysis — HAZOP
(Hyatt 2003). Those who perform these
sometimes voice challenges of these pro-
cesses, such as the following:

1. Frequently labor intensive or tedious,
adding cost and sometimes discour-
aging to the energy of those who face
the next session;

2. May overlook certain problems, or
feel somewhat arbitrary in identifying
issues;

3. Typically, outcome is very sensitive
to the skills and background of the
performing team;

4. May not feel systematic in fully iden-
tifying the risks of system failure.

These lead us to ask: How can process-
es for failure identification and analysis
be made to feel more systematic and less
arbitrary and exhausting? How do we gain
assurance we have found all the important
failure modes and effects for a system?
These and other challenges of traditional
systems engineering approaches are being
addressed using model-based systems engi-
neering (MBSE).

ASSUMED MBSE BACKGROUND WE’LL NEED
The Emergence of Model-Based Meth-

ods. Model-based methods supplement the
use of natural language prose in traditional
engineering documents with the use of
“models” which are explicit data structures
(typically relational tables and formal dia-
grams). The structure of these models can
be exploited to create analyses and checks
that would be much more difficult and sub-
jective to perform using purely prose-based
methods. When applied well, they can also
more effectively convey shared meaning to
human readers. There is a growing litera-
ture on model-based systems engineering
(MBSE) (Estafan 2009, Hybertson 2009,
INCOSE 2009, Schindel 2005a). In this

paper, we will focus on how failure analysis
can be more deeply integrated as a part of
such MBSE models.

Base MBSE Metamodel. The failure
analysis approach this paper describes
uses the fact that the requirements and
high level design of a subject system can
be represented in an information structure
summarized by the base systems engineer-
ing metamodel of Figure 1.

Among the impacts of this metamodel
is the re-positioning of prose functional
requirements statements, which become a
formal part of the model, as input-output
relationships describing external system
“black box” behavior during interactions
with external actors — a kind of “prose
transfer function”. This is important to the
results discussed in this paper and is de-
scribed and illustrated in Schindel (2005a).

The failure analysis approach this paper
describes also uses the fact that the (mod-
eled) features for a system summarize, in
stakeholder language, (all of) the behaviors
of the system that will be valued by (all of)
the system’s stakeholders.

The balance of this paper assumes the
availability of a systems requirements and

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

45

design model that is based on the above metamodel. When we
build on the foundation of the MBSE metamodel, some surpris-
ing, powerful, and unifying simplifications begin to appear.

MODEL-BASED FAILURE ANALYSIS: UNIFYING CONCEPTS
Features, Failures, and their Impacts. Let us assume that we

have a modeled set of product requirements, based on the above
metamodel. Because we have available all modeled system features
satisfying all system stakeholders, it follows that a failure is then
synonymous with not delivering what a feature promised. Because
they are stakeholder ideas, modeled features are typically not very
technical in their descriptions, but in fact summarize everything
that a system should deliver to its stakeholders. (This may include
stakeholder-quantified feature attributes.) Each feature is used to
generate one or more failure impacts, summarizing the impact of
not delivering (at least some aspect of) the feature’s promise to the
stakeholder. For example:

 ■ Feature = “The system delivers medication on a dose accurate
basis.”

 ■ Stakeholder impacts of not delivering Feature = “Illness,”
“Disability,” “Death,” etc.

 ■ Severity of impacts: 3, 4, 5.

As illustrated above, each impact can also have a pre-populated
severity of associated with it, describing the stakeholder-rated se-
verity of such an impact ever occurring. Notice that this has been
done so far without reference to the physical design of the system.

To cover all the stakeholders, features may include issues
important not only to system end users, but also to those who
manufacture, distribute, sell, or support the system, as well as
shareholders in the profit-making enterprise, etc. We may or may
not be interested in failure impacts on all these stakeholders and
are offered the opportunity to explicitly decide. If a failure analysis
is to be limited to certain stakeholder and feature subsets, such as
medical harms to patients, then the only features that need to be
considered are those that have those impacts on patients.

Surprise Number 1. Our first “surprise” is that the only effects
(the E in FMEA) that a failure can have are non-delivery of feature
promises — and these can be pre-modeled with each of the fea-
tures, as failure impacts. If we claim to know our stakeholders and
their modeled features, we can “pre-populate” the only possible
effects of failures. If we think we have discovered an effect that is
not implied by an existing modeled feature, we need to inform the
feature modeler that they may have missed an important product
feature. If we don’t have a model of our system’s stakeholders and

their modeled features, the extended team has important home-
work to do before we can perform an FMEA or similar analysis.
(This was always true in any method but is made more transpar-
ently obvious by the model-based approach.)

Requirements, Interactions, and Counter-Require-
ments. This approach also uses the fact that the (model-based)
functional requirements statements for a system describe its
required behavior, occurring during the interactions the subject
system has with external systems (actors). Any failure of that
system will include at least one instance of an interaction be-
havior by the system with at least one external system, having
negative stakeholder consequence. At a black box level, these are
the functional failures identified in FMEA, RCM, or other failure
analyses. This method builds failure analysis on top of the system’s
requirements model, suggesting that the failure analysis cannot
be completed without an agreed set of functional requirements,
in model form. (Note that model-based requirements of the type
described here are a technical characterization of relevant aspects
of the system’s black box behavior. This degree of “completeness” is
characteristic of model-based requirements of the type discussed
here. This “completeness” will now come in handy, for generating
FMEA functional failures. This also makes it even more obvious
why the system requirements as viewed by the requirements
analyst, designer, and failure analysis review team should all be the
same modeled requirements — and that each team can improve
upon the shared model work of the others.)

Each system requirement statement is used to generate at least
one counter-requirement statement. For example:

 ■ Requirement = “The system shall deliver at least 3 hours of
operation on one battery.”

 ■ Counter-requirement = “The system does not deliver at least 3
hours of operation on one battery.”

A complete set of counter-requirements can be rapidly
generated in a simple way from the system’s requirements, by
“reversing” them.

Surprise Number 2. All FMEA functional failures can be
rapidly generated as counter — requirements, from MBSE modeled
functional requirements.

Some requirements may generate more than one counter-re-
quirement. For example:

 ■ Requirement = “The system shall maintain temperature in the
range 70-74 degrees.”

 ■ Counter-requirement 1 = “The system allows temperature to
exceed 74 degrees.”

 ■ Counter-requirement 2 = “The system allows temperature to
fall below 70 degrees.”

 ■ Furthermore, because the requirements were already associ-
ated with the features of a system model, the counter-require-
ments can be easily associated with impacts, which are the
(feature non-delivery) “effects” of an FMEA analysis, without
“from scratch” analysis.

Surprise Number 3: All associations (match-ups) of FMEA
functional failures with FMEA effects can be generated from the
association of the violated requirements with its associated stake-
holder feature.

Modes (States): Failure Modes. The MBSE requirements
approach referenced also uses the fact that the interactions a
system has with external systems can be thought of as associated
with the system being in a certain state, or mode. The behavior
(external interaction) of a system is different if it is “off ”, “on”,
“idling”, etc. Each of these are states (or modes) of that system’s
behavior. These are all “normal” modes, in the sense that while
they occur in different circumstances, the associated system

Stakeholder Feature

State

Input/
Output

System

System of
AccessInterface

Functional
Role

Design
Component

Functional
Interaction

(Interaction)

Requirement
Statement

attribute

attribute

attribute

attribute

“A” Matrix
Couplings

“B” Matrix
Couplings

(logical system)

(physical system)

Stakeholder
World

Language

Technical
World

Language

High Level
Requirements

Detail Level
Requirements

High Level
Design

Figure 1. Summary of base systems engineering metamodel

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

46

behavior is considered normal (that is, what
is described by requirements).

In addition, a system can sometimes
enter an “abnormal” mode, in which its be-
havior is undesirable — such as “overheat-
ed”. Sometimes abnormal states are called
failure modes when the associated behavior
is bad enough.

Interaction-State Chains; Causes. This
approach further uses the fact that the
design components, states, interactions,
requirements, and features information of
the Figure 1 metamodel can be unfolded
(split) across normal and abnormal
behavior, and across “causality chain”
sequences. The resulting models add further
to the information used to populate a failure
analysis (for example, FMEA table).

In all these cases, the current mode
(state) of the system can be viewed as the
immediate reason that it is behaving a par-
ticular way. That behavior is characterized
by the interactions the system is currently
able to perform (the interactions associated
with that state).

If we then ask how the system came to be
in its current state, we find that a previous
interaction of some sort will have “placed
it in the current state”. This leads to the
idea that there are “causality chains” that
take the form of sequences of alternating
interaction, state, interaction, state, etc. For
example:

 ■ Interaction: Turn On the System
 ■ State: System On
 ■ Interaction: Request System Menu
 ■ State: Displaying Menu.

This same idea works for abnormal
states:

 ■ Interaction: Insert Battery
 ■ State: Battery Inserted
 Backwards

 ■ Interaction: Turn On System
 ■ State: System Inoperative.

In all these cases, the idea of cause can
be pursued by looking to earlier parts of
the chain. We can say that a later part of the
chain is “caused” by the states and interac-
tions of an earlier part of the chain.

Pre-Populating A Library of Failure
Modes. The counter-requirements and fea-
ture failure impacts described earlier above
depend only upon the structure of require-
ments and stakeholder expectations for a
system — they are independent of its design.
In contrast, the failure modes of a system
depend upon its design—specifically, upon
its physical design components. Each
such design component has an expected
behavior, based upon the logical roles and
requirements allocated to it, and a set of
failure modes, which are abnormal states
that physical component type may enter in

which it will display behavior violating its
allocated logical roles and requirements.

Since counter requirements and feature
failure impacts can be pre-populated inde-
pendent of design, is it possible that failure
modes can be pre-populated independent
of system requirements? This turns out to
be connected to knowing what roles and
(decomposed, or white box) requirements
will be allocated to the physical part. For
most physical parts playing typical or “stan-
dard” roles, it turns out that we have such
a prediction available even if the (parent
black box) requirements of the total system
are not currently visible. For example:

 ■ Design Component = Madsen Model
P53 Centrifugal Pump

 ■ Normal Allocated Roles = Liquid
Transport, Liquid Containment,
Powered Safe Operation

 ■ Failure Modes = Bearing Failure,
Leakage Seal Failure, Short to Case

 ■ Probabilities of Occurrence = 0.002,
0.00045, 0.000001 (per 10,000 service
hours).

Probability of Occurrence. As illustrat-
ed above, for each pre-populated failure
mode, we can also include probability of
occurrence parametric information that
characterizes the likelihood of the physical
component entering the failure mode from
the interactions it will experience in its
typically assigned roles. This will later help
to drive the failure risk scoring process in
the usual manner.

Combinatorial Matching Up of
Requirements and Design Data. The
functional failures (counter requirements)
and failure effects (feature failure impact)
data can be pre-populated independent of
the system’s internal design, and the failure
mode data for standard component roles
can be pre-populated independent of the
system’s external requirements. So, when
both the requirements and a candidate
design have become known, how do these
two halves of the failure analysis model get
connected to each other? This turns out to
be a combinatorial algorithm.

First, it turns out that the counter-re-
quirements (functional failures) obtained
by reversing the requirements statements
may describe some hypothetical external
behaviors that are never (or with probabil-
ity too small to matter) caused by compo-
nent failure modes. This will cause some
pre-populated functional failures to be
dropped. For example, a requirement that
a product weigh less than one pound has
a counter-requirement that it weighs more
than one pound. It may be determined
that there is no component failure mode
that impacts weight, so that this functional
failure is dropped from the list. (Notice

that even this failure mode could happen
for some products — for example, a hazard
protection suit that becomes wet weighs
more.)

Second, it turns out that some failure
modes of a physical component have no
consequence on the product’s required
behavior, because the failure mode de-
scribes a role not allocated to the part in
this particular product design. For example,
an integrated circuit may have built-in
circuitry for performing certain functions
which are not used by a certain product’s
design, even though other portions of that
chip are used.

The connection of the requirements half
of the failure analysis to the design half of
the failure analysis is made by matching
up “mating” pairs and discarding what is
left as not applicable (after checking for
missed cases this approach also helps us
find—another benefit). The matching up
is accomplished through the matching of
counter-requirements with failure modes.
Each failure mode causes some abnor-
mal behavior. All abnormal behavior is
described by counter requirements. When
we find a counter-requirement belonging
to a failure impact is equal to a counter-re-
quirement for a failure mode, that pair is
associated together, completing two major
sections of a row in a failure analysis table.
(Some failure modes may connect to multi-
ple counter requirements and some counter
requirements may connect to multiple
failure modes.)

This process may use two levels of
requirements, in the form of system black
box requirements and their decomposed
white box requirements (allocated to
physical parts), in which case counter-
requirements may be developed at both
levels. A simpler alternate method is to use
only one level of counter-requirements, with
the component failure modes associated
directly with the resulting abnormal
behavior at the black box level — in which
case the association of failure modes with
abnormal behavior is dependent upon
knowing the system level design. Likewise,
the states discussed above may be at two
levels, representing states (and failure
modes) of system components and the
whole system, or simplified to states of the
whole system, in which case the failure
modes are modes of the whole system and
again dependent upon its design.

The discussion above assumes failure
modes originate in internal system compo-
nents, typical of analyses such as a design
FMEA (D-FMEA). Also discussed later
below are failure modes of external people
or processes that impact upon the subject
system, as seen in an application FMEA
(A-FMEA) or a process FMEA (P-FMEA).

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

47

The counter-requirements matching-up approach is substantially
the same in these cases.

A UNIFYING MBSE VIEWPOINT FOR RISK ANALYSIS INFORMATION
Order of Occurrence versus Order of Analysis; Checking;

FMEA versus Fault Tree. FMEA analysis typically reasons from
component failure modes to system level counter-requirements,
to the stakeholder impacts (failure effects, such as user injury).
This traditional analysis thus occurs in the sequence of cause-to-
effect, and the methodology described here supports that order
of reasoning. In a traditional FMEA table, it proceeds more or
less from left to right. This traditional order of reasoning is why
FMEA is said to work for analysis of single failure modes but not
multiple simultaneous failure modes.

This methodology also supports the generation of fault tree
analyses. Whereas an FMEA analysis traditionally begins from
each possible component level failure mode and reasons to
its effect (typically a one-to-one process generating a row of
an FMEA table), a fault tree analysis traditionally begins with
each effect and reasons backwards to identify each possible
component failure mode that might cause it (typically a one-to-
many process generating a many-branched fault tree under a
single effect). Each path of the fault tree is roughly equivalent to
a row of the FMEA table. The information models described here
describe both approaches, differing only by the order in which
the data model is filled in during the analysis process. The use
of MBSE failure analysis allows reasoning in other directions—
because it is really about an underlying information model, not
an order of reasoning, we can populate that information model
in different orders. These include backwards reasoning from
failure effect to cause (as in a fault tree analysis) and middle-
out reasoning, from system counter requirement to both their
upstream causes and downstream effects. This is of major
value, as it facilitates completeness checking of the resulting
failure analysis table. We can independently check the effects
against a complete library of all possible feature-based impacts.
We can independently check the middle (the system counter-
requirements) against a complete library of all possibilities, based
on the listed system requirements. This improves completeness
and coherence of the FMEA or other analysis, including its
inspectability.

Faults versus Failures; Fault Tolerant Systems; Fail Safe
Aspects. In the specific language (Anderson and Lee 1981) of
fault tolerant systems (which is not always used the same in
failure analysis procedures) faults and failures are undesirable
states or behaviors, but don’t mean the same thing. A fault is an
abnormal component or subsystem condition (state), which may
or may not result in a system level failure. Remembering from
above that failures are not delivering agreed upon stakeholder
features, we can say that a fault tolerant system is a system that
does not fail (continues to deliver features) in spite of component
or subsystem faults. (That is, it tolerates faults in its own
components, while continuing to deliver external features.)

For example, aircraft hydraulic systems typically employ
redundancy, so that they can deliver safe flight services while
tolerating a fault in a hydraulic line.

In the language of failure mode analysis, the term “failure
mode” is frequently used to describe an abnormal state of a
component or subsystem, even if the overall system was designed
to keep delivering all its external services in the presence of
that component failure mode. This is not so inconsistent if you
consider that the subsystem or component is not delivering its
“external” services, but it can be a little confusing if you don’t
expect the term or keep track of system levels. Sometimes a
system internal fault can present risk of a serious (for example,

life or property threatening) failure behavior by the subject system.
In those cases, mitigations are sometimes planned such that,
although the system may fail to deliver all its promised features, it
protects from presenting a more serious failure. That is, it still fails,
but “fails safely.” This is called a fail-safe system.

Subsystem Causing Failure: D-FMEA. In a system, an
abnormal state of a component may cause a system level failure.
We can reason forward from the component state to the system
failure it causes, or backward from the component state to its
cause. For example, the following failure mode is “caused” by the
interaction shown:

 ■ (Interaction) Cause of Failure Mode: Normal Wear
 ■ Component Failure Mode State: Gear Train Binding/Lash-Up.

Remembering the idea of interaction-state chains, we can see
that many such failure mode states can be said to be caused by a
previous interaction, whether it is a normal use interaction or some
extraordinary damaging interaction. If the causal interactions are
“normal” behavior by the external systems performing them, then
we could say that the failure mode is effectively inherent to the
design of the subject system in its normal use. Analyzing failures of
this kind is typically the subject of D-FMEA (design failure mode
effects analysis) work. Sometimes this leads to a different design
to reduce the likelihood of the failure mode occurring, or in other
cases to other controls (mitigations) intended to reduce the impact
of the failure mode when it occurs.

In all those cases, it could be said that the role played by the
subject system in normal interactions eventually leads to the
failure mode of the system’s component. However, it is alternatively
possible that the system design is not the cause, but rather that the
external systems are behaving abnormally. This case is covered in
the next two sections.

Peer System Causing Failure: A-FMEA. External systems inter-
acting with the subject system are sometimes called “peer” systems,
or “actors”. Unlike the subsystems or components discussed above,
they are external to the subject system.

In an A-FMEA (application failure mode effects analysis),
attention is focused on the effect of abnormal behavior by external
systems that are typically human “users” of the subject system. It
could be said that the original failure modes in this case are states of
the external system. For example:

1 Failure Mode (Pilot State): Attention Overloaded

2 Interaction: Select Target (assume wrong value entered)

3 State (of Weapons System): Awaiting Weapon Release Confirmation

4 Interaction: Confirm Weapon Release

5 State: Delivering Weapon

1 Cause of Failure (Interaction): Poor User Training

2 Resulting Failure Mode (State): User Unaware

3 Interaction: User Closes Valve (Over-Tightening)

4 Resulting System Component State: Valve Seal Failure

As illustrated by the above example, we can have a failure to
deliver overall system features even though the subject system
meets all of the requirements assigned to it. However, it is also
possible for an external system to drive the subject system into
its own abnormal (for example, damaged) state, after which it no
longer meets requirements assigned to it. For example:

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

48

Both of these cases are of interest in an A-FMEA. The second
case looks a lot like a D-FMEA after the point of driving the subject
system into a bad state.

Notice that “users” are not the only external systems whose
failure modes can damage the subject system’s state. Other faulty
systems in the application domain may also have to be considered.
When the external actor that is in an abnormal state is a human
being, the MBSE model is in the territory of modeling human
behavior. This is further discussed in Schindel (2006).

Peer System Causing Failure: P-FMEA. One special external
system traditionally analyzed is the subject system’s manufactur-
ing system. This is the subject of a P-FMEA (process failure mode
effects analysis). The nature of a manufacturing system is to create
the subject system, so it may be found that all the P-FMEA failures
of interest result in bad product system states. For example:

1 (Interaction) Cause of Failure Mode: Glue Build-Up on Nozzle During Use

2 Component Failure Mode State: Nozzle Obstructed

3 (Interaction) Not enough glue applied

4 Subject System State Part Loose

1 (Interaction) Cause of Failure Mode: Transport Packaged Product

2 Component Failure Mode State: Package Seal Fractured

3 (Interaction) Tolerate Exposure to Contaminants

4 Component Failure Mode State: Food Product Contaminated

FURTHER LEVERAGING THE RESULTS
Patterns As Re-Usable Models. This paper describes the

use of model-based systems engineering information in failure
analysis, to improve results. If an enterprise needs to perform
failure analysis on different products or systems that are some-
what related but vary in their specific configuration (for example,
product lines), then a more powerful extension is also available.
This is called pattern-based systems engineering (PBSE). The
basic idea is to make the models configurable and re-usable, so
that they can rapidly be re-used in future projects and can also
be used to accumulate learning. This is a bigger idea than accu-
mulating standard lists of failure modes. See Figure 2.

This approach to systems engineering patterns treats a pattern
as a configurable, re-usable model of requirements and design,
described further in Schindel (2005b), and Schindel and Smith
(2002).

Enhanced Use of FMEA and Risk Analysis Tools. A number
of basic and more advanced commercial automated tools are
available for use in generating FMEA and other forms of failure
or risk analysis. In their most basic use, the analyst manually
enters data into relatively fixed forms and generates resulting
reports. In their more advanced form, these tools support
customization or configuration of reports, data entry, and
some aspects of the underlying information models. Some also
support accumulation and use of re-usable standard categories or
other data, and some support integration with other engineering
tools, such as requirements management tools.

The model-based concepts, methodology, and procedures
described in this document can be used with a number of
these commercial tools, improving their value. In general, the
more powerful and flexible the tool, the more aspects of this
methodology may be used.

The simplest, but least beneficial, way to initially do this is to
configure the tables and reports of a tool to accept manual entry
of data of the type described in this document.

A more sophisticated approach allows re-use of data from a
pattern of requirements, design, and failures (patterns). Since
patterns are relational models, this is more powerful than simply
having lists of standard pull-down items.

This methodology also enhances the ability to integrate an
FMEA or failure analysis tool with a requirements management
tool, by using counter-requirements that are associated with
the system level requirements. This is more powerful than
simply having links between data items in two tools. In fact, if
a requirements and design model is available in MBSE form,
then tool-based combinatorial algorithms can be used to
automatically generate an initial draft FMEA table. Of course,

There can also be manufacturing process failures that fail in the
sense of not delivering on all the other manufacturing process sys-
tems features, as when manufacturing yield, manufacturing oper-
ating cost, or manufacturing safety are impacted by manufacturing
faults. Depending on the intended scope of the P-FMEA, these may
or may not be of interest to include and analyze.

Other major processes, such as the commercial distribution
process, can have faults that create bad states in the subject system.
For example:

Depending on the intended scope of the P-FMEA, these other
processes may also be considered.

D-FMEA, A-FMEA, P-FMEA, and Unified FMEA. Although it
may be desirable to separate the D-FMEA, P-FMEA, and A-FMEA
“reports” for attention by different groups, and to generate and
review them using different subject matter experts, it is also desirable
to generate them from a consistent underlying information model.
For example, all three FMEA types
depend on the same system level
counter-requirements and feature
impacts. If this consistency is used,
then it is easier to understand the
different FMEAs in a consistent
way, and to judge their accuracy and
completeness.

While there may be reasons
to differently format or label the
tabular “reports” that are generated
for these different types of failure
analysis, the approach described
here at least intends to generate them
from a common base of underlying
information, and to minimize
differences in labeling except where
it improves the outcome.

Generic
System
Pattern

Product Lines or
System Families

Individual Product
or System Configurations

Stakeholder Feature

State

Input/
Output

System

System of
AccessInterface

Functional
Role

Design
Component

Functional
Interaction

(Interaction)

Technical
Requirement

Statement

Design
Constraint
Statement

attribute

Stakeholder
Requirement

Statement
attribute attribute

attribute

attributeattribute

WB

WB
BB

BB

“A” Matrix
Couplings

“B” Matrix
Couplings

(logical system)

(physical system)

Stakeholder
World

Language

Technical
World

Language

High Level
Requirements

Detail Level
Requirements

High Level
Design

Stakeholder Feature

State

Input/
Output

System

System of
AccessInterface

Functional
Role

Design
Component

Functional
Interaction

(Interaction)

Technical
Requirement

Statement

Design
Constraint
Statement

attribute

Stakeholder
Requirement

Statement
attribute attribute

attribute

attributeattribute

WB

WB
BB

BB

“A” Matrix
Couplings

“B” Matrix
Couplings

(logical system)

(physical system)

Stakeholder
World

Language

Technical
World

Language

High Level
Requirements

Detail Level
Requirements

High Level
Design

Improve
Pattern

Configure,
Specialize

Pattern

Metamodel for
Model-Based Systems
Engineering (MBSE)

Pattern Hierarchy for
Pattern–Based Systems

Engineering (PBSE)

Pattern Class Hierarchy

Stakeholder Feature

State

Input/
Output

System

System of
AccessInterface

Functional
Role

Design
Component

Functional
Interaction

(Interaction)

Requirement
Statement

attribute

attribute

attribute

attribute

“A” Matrix
Couplings

“B” Matrix
Couplings

(logical system)

(physical system)

Stakeholder
World

Language

Technical
World

Language

High Level
Requirements

Detail Level
Requirements

High Level
Design

Figure 2. Patterns are re-usable, configurable models

SP
ECIA

L
FEA

TU
R

E
O

CTO
B

ER
 2O

24
VOLUM

E 27/ ISSUE 5

49

this does not replace human analysis, but does reduce the
drudgery of initial generation, freeing the analyst to do deeper
thinking and analysis of the failure data.

RESULTS TO DATE
We have seen these methods help both experienced FMEA

analysts as well as newcomers to more productively generate
well-organized failure analyses, in applications including
manufacturing and health care. The approach is not at odds with
traditional methods, in producing substantially the same form of
deliverable — but provides a stronger basis for understanding the
meaning and degree of coverage that deliverable represents, while
more tightly integrating failure analysis with requirements and
design data.

CONCLUSIONS
1. Failure analysis data and processes can be more deeply inte-

grated with system requirements data and processes, using
model-based methods, with benefits to depth of shared team
understanding, productivity, process cohesion, coverage,
and lower level of entry expertise for participants.

2. A subset of FMEA analysis can occur in advance of, or
independent of, system design, using the structure of model-
based stakeholder features and functional requirements to

REFERENCES
 ■ Anderson, T., and P. Lee. 1981. Fault Tolerance: Principles and

Practice. Prentice-Hall ISBN-10: 0133082547.
 ■ Dyadem. 2002. Guidelines for Failure Mode and Effects Anal-

ysis, for Automotive, Aerospace and General Manufacturing
Industries. CRC Press. ISBN 0-9731054-1-0.

 ■ ——— . 2003. Guidelines for Failure Modes & Effects Analysis for
Medical Devices, ISBN 0849319102, Richmond Hill, Ontario,
CA: Dyadem Press.

 ■ Estefan, J. 2009. “Survey of model-based systems engineering
(MBSE) methodologies.” INCOSE-TD-2007-003-01, Rev B.

 ■ Hyatt, N. 2003. Guidelines for Process Hazards Analysis,
Hazards Identification & Risk Analysis. ISBN 0849319099,
Richmond Hill, Ontario, CA: Dyadem Press.

 ■ Hybertson, D. 2009. Model-Oriented Systems Engineering
Science. CRC Press.

 ■ INCOSE. 2009. INCOSE Model driven system design working
group web site, http://www.incose.org/practice/techactivities/
wg/mdsd/.

 ■ ISO/IEC. 2006. IEC International Standard 60812 Analysis
Techniques for System Reliability – Procedure for Failure
Mode and Effects Analysis (FMEA). Geneva, CH.

 ■ ——— . 2007. ISO/IEC 14971:2007 Medical Devices —Applica-
tion of Risk Management to Medical Devices. Geneva, CH.

 ■ Moubray, J. 1997. Reliability-Centered Maintenance, Second
Edition. New York, US-NY: Industrial Press, Inc.

 ■ Powell, M. 2005. “Dealing with Uncertainty in Systems
Engineering.” Tutorial INCOSE 2005 International
Symposium, Rochester, US-NY, 10-15 July.

 ■ Schindel, W. 2005a. “Requirements Statements are
Transfer Functions: An Insight from Model-Based Systems
Engineering.” INCOSE 2005 Symposium, Rochester, US-NY,
10-15 July.

 ■ ——— . 2005b. “Pattern-Based Systems Engineering: An
Extension of Model-Based SE.” Tutorial INCOSE 2005
International Symposium, Rochester, US-NY, 10-15 July.

 ■ ——— . 2006. “Feelings and Physics: Emotional, Psychological,
and Other Soft Human Requirements, by Model-Based
Systems Engineering.” INCOSE 2006 International
Symposium, Orlando, US-FL, 9-13 July.

 ■ Schindel, W., and V. Smith. 2002. “Results of Applying a
Families-of-Systems Approach to Systems Engineering of
Product Line Families.” SAE International Technical Report
2002-01-3086, November.

 ■ US DoD 1980. MIL-STD-1629A, “Military Standard
Procedures for Performing a Failure Modes, Effects, and
Criticality Analysis.”

ABOUT THE AUTHOR
William D. Schindel is president of ICTT System Sciences, a

systems engineering company, and developer of the Systematica™
methodology for model and pattern-based systems engineering.
His 40-year engineering career began in mil/aero systems with
IBM Federal Systems, Owego, NY, included service as a faculty
member of Rose-Hulman Institute of Technology, and founding
of three commercial systems-based enterprises. He has consulted
on improvement of engineering processes within automotive,
medical/health care, manufacturing, telecommunications,
aerospace, and consumer products businesses. Schindel earned
the BS and MS in mathematics, and was awarded the Hon. D.
Eng by Rose-Hulman Institute of Technology for his systems
engineering work.

pre-populate the space of potential functional failures and
their prioritized effects.

3. Another major subset of failure analysis data can be pre-
populated that is requirements independent, in the form
of libraries of physical components (or technologies),
their typically assigned roles, and their failure modes and
associated abnormal behaviors.

4. Modeled system design introduces failure mechanisms for
D-FMEA, while human, process, and equipment actors
introduce failure sources for A-FMEA and P-FMEA, all of
which can be better integrated.

5. FMEA, fault tree, and other forms of analysis can be viewed
as different views of the same underlying modeled data, for
different purposes and emphases.

6. Patterns, when formed as re-usable, configurable models
of system requirements and design, can include failure risk
analysis, whose coverage and quality can be improved from
project to project, in support of a learning organization.

7. Automated tools for failure analysis, requirements manage-
ment, design, simulation, and other aspects of the systems
engineering process can be integrated more deeply than
simply linking their data records, by configuring their data-
bases to take advantages of the integrated underlying MBSE/
PBSE metamodel.

50

Systems Engineering: The Journal of The International Council on Systems Engineering

Call for Papers
he Systems Engineering journal is intend ed to be a primary
source of multidisciplinary information for the systems engineer-
ing and management of products and services, and processes of
all types. Systems engi neering activities involve the technologies

and system management approaches needed for
• definition of systems, including identi fication of user

requirements and technological specifications;
• development of systems, including concep tual architectures,

tradeoff of design concepts, configuration management during
system development, integration of new systems with legacy
systems, inte grated product and process development; and

• deployment of systems, including opera tional test and
evaluation, maintenance over an extended life-cycle, and
re-engineering.

Systems Engineering is the archival journal of, and exists to serve the
following objectives of, the International Council on Systems Engineer-
ing (INCOSE):

• To provide a focal point for dissemination of systems
engineering knowledge

• To promote collaboration in systems engineering education
and research

• To encourage and assure establishment of professional
standards for integrity in the practice of systems engineering

• To improve the professional status of all those engaged in the
practice of systems engineering

• To encourage governmental and industrial support for research
and educational programs that will improve the systems
engineering process and its practice

The journal supports these goals by provi ding a continuing, respected
publication of peer-reviewed results from research and development in
the area of systems engineering. Systems engineering is defined broadly
in this context as an interdisciplinary approach and means to enable the
realization of succes s ful systems that are of high quality, cost-effective,
and trust worthy in meeting customer requirements.

The Systems Engineering journal is dedi cated to all aspects of the
engineering of systems: technical, management, economic, and social.
It focuses on the life-cycle processes needed to create trustworthy and
high-quality systems. It will also emphasize the systems management
efforts needed to define, develop, and deploy trustworthy and high
quality processes for the production of systems. Within this, Systems
Engineer ing is especially con cerned with evaluation of the efficiency and
effectiveness of systems management, technical direction, and integra-
tion of systems. Systems Engi neering is also very concerned with the
engineering of systems that support sustainable development. Modern
systems, including both products and services, are often very knowl-
edge-intensive, and are found in both the public and private sectors.
The journal emphasizes strate gic and program management of these,
and the infor mation and knowledge base for knowledge princi ples,
knowledge practices, and knowledge perspectives for the engineering of

systems. Definitive case studies involving systems engineering practice
are especially welcome.

The journal is a primary source of infor mation for the systems engineer-
ing of products and services that are generally large in scale, scope,
and complexity. Systems Engineering will be especially concerned with
process- or product-line–related efforts needed to produce products that
are trustworthy and of high quality, and that are cost effective in meeting
user needs. A major component of this is system cost and operational
effectiveness determination, and the development of processes that
ensure that products are cost effective. This requires the integration of a
number of engi neering disciplines necessary for the definition, devel-
opment, and deployment of complex systems. It also requires attention
to the life cycle process used to produce systems, and the integration
of systems, including legacy systems, at various architectural levels.
In addition, appropriate systems management of information and
knowledge across technologies, organi zations, and environments is also
needed to insure a sustainable world.

The journal will accept and review sub missions in English from any
author, in any global locality, whether or not the author is an INCOSE
member. A body of international peers will review all submissions, and
the reviewers will suggest potential revisions to the author, with the intent
to achieve published papers that

• relate to the field of systems engineering;
• represent new, previously unpublished work;
• advance the state of knowledge of the field; and
• conform to a high standard of scholarly presentation.

Editorial selection of works for publication will be made based on con-
tent, without regard to the stature of the authors. Selections will include
a wide variety of international works, recognizing and supporting the
essential breadth and universality of the field. Final selection of papers
for publication, and the form of publication, shall rest with the editor.

Submission of quality papers for review is strongly encouraged. The
review process is estimated to take three months, occasionally longer for
hard-copy manuscript.

Systems Engineering operates an online submission and peer review
system that allows authors to submit articles online and track their
progress, throughout the peer-review process, via a web interface.
All papers submitted to Systems Engineering, including revisions or
resubmissions of prior manuscripts, must be made through the online
system. Contributions sent through regular mail on paper or emails with
attachments will not be reviewed or acknowledged.

All manuscripts must be submitted online to Systems Engineering at
ScholarOne Manuscripts, located at:
 https://mc.manuscriptcentral.com/SYS
Full instructions and support are available on the site, and a user ID and
password can be obtained on the first visit.

T

Visit www.incose.org/symp2025 and contact us TODAY - The INCOSE Events Team

Call
for Papers

Call
for Tutorials

Call for Panels/
Roundtables

Call for paperless
presentations

Mark your calendar now!
26 – 31 July 2025

Submission date for papers, tutorials, panels, and
paperless presentations: 30 November 2024

Annual INCOSE
international symposium

th

hybrid event

Ottawa, Canada
July 26–31, 2025

35

https://www.incose.org/symp2025

https://www.3ds.com/products/catia/catia-magic

	Front Cover_Vol 27 Issue 5
	From the Editor-In-Chief
	Special Feature
	Innovation Ecosystem Dynamics, Value and Learning I: What Can Hamilton Tell Us?
	Realizing the Promise of Digital Engineering: Planning, Implementing, and Evolving the Ecosystem
	Requirements Statements Are Transfer Functions: An Insight from Model-Based Systems Engineering
	Feelings and Physics: Emotional, Psychological, and Other Soft Human Requirements, by Model-Based Systems Engineering
	Failure Analysis: Insights from Model-Based Systems Engineering

