
Stakeholder Feature

State

Input/
Output

System

System of
AccessInterface

Functional
Role

Design
Component

Functional
Interaction

(Interaction)

Technical
Requirement

Statement

Design
Constraint
Statement

attribute

Stakeholder
Requirement

Statement
attribute attribute

attribute

attributeattribute

WB

WB
BB

BB

“A” Matrix
Couplings

“B” Matrix
Couplings

(logical system)

(physical system)

Stakeholder
World

Language

Technical
World

Language

High Level
Requirements

Detail Level
Requirements

High Level
Design

Design: Second (and Lower) Level System(s)

Stakeholder
Requirements
Definition

Requirements
Validation

Requirements
Analysis

Architectural
Design

Verification
(by Analysis &

Simulation)

Information Passing Through Processes Above

(S*Metamodel Summary)

Design: Top-Level System

Design: Second (and Lower) Level
System(s)

Realization: Second (and Lower) Level
System(s)

Realization: Top Level System

Component Level Design,
Acquisition, Fabrication

Organizational Project–
Enabling Processes

Agreement Processes

Technical Processes

Project Processes
Project

Planning

Life Cycle Model
Management

Human Resource
Management

Quality
Management

Acquisition

Supply

Infrastructure
Management

Project Portfolio
Management

Decision
Management

Information
Management

Risk
Management

Requirements
Analysis

Requirements
Validation

Verification
(by Test)

Simulation
Validation

Integration

Verification
(by Test)

Simulation
Validation

Integration

Disposal

Transition

MaintenanceOperation

Stakeholder
Requirements

Definition

Architectural
Design

Verification
(by Analysis &

Simulation

Requirements
Analysis

Requirements
Validation

Stakeholder
Requirements

Definition

Architectural
Design

Verification
(by Analysis &
Simulation)

Configuration
Management Measurement

Implementation

Project Assessment
and Control

Architecture View of ISO 15288 Life Cycle Management

INSIGHT

AUGUST 2O24
VOLUME 27 / ISSUE 4

A PUBLICATION OF THE INTERNATIONAL COUNCIL ON SYSTEMS ENGINEERING ®

Theoretical Foundations:
Impacts on Practice I

This Issue’s Feature:

Process versus information

Illustration credit: from the article
Maps or Itineraries? A Systems Engineering Insight
from Ancient Navigators
by William D. Schindel (page 9)

https://www.3ds.com/products/catia/catia-magic

IN
SID

E
TH

IS ISSU
E

A
U

G
U

ST 2O
24

VOLUM
E 27/ ISSUE 4

3

Inside this issue

INSIGHT
AUGUST 2O24 VOLUME 27 / ISSUE 4

A PUBLICATION OF THE INTERNATIONAL COUNCIL
ON SYSTEMS ENGINEERING

®

FROM THE EDITOR-IN-CHIEF 6

SPECIAL FEATURE 9

Maps or Itineraries? A Systems Engineering Insight from Ancient Navigators 9

Got Phenomena? Science-Based Disciplines for Emerging Systems Challenges 17

Explicating System Value through First Principles: Re-Uniting Decision Analysis
with Systems Engineering 25

Innovation, Risk, Agility, and Learning, Viewed as Optimal Control and Estimation 33

What Is the Smallest Model of a System? 43

IN
SID

E
TH

IS ISSU
E

A
U

G
U

ST 2O
24

VOLUM
E 27/ ISSUE 4

4

About This Publication

INFORMATION ABOUT INCOSE OVERVIEW
INCOSE’s membership extends to over 23,000 members and
CAB associates and more than 200 corporations, government
entities, and academic institutions. Its mission is to share,
promote, and advance the best of systems engineering from
across the globe for the benefit of humanity and the planet.
INCOSE charters chapters worldwide, includes a corporate
advisory board, and is led by elected officers and directors.

For more information, click here:
The International Council on Systems Engineering
(www.incose.org)
INSIGHT is the magazine of the International Council on
Systems Engineering. It is published six times per year and

features informative articles dedicated to advancing the state
of practice in systems engineering and to close the gap with
the state of the art. INSIGHT delivers practical information
on current hot topics, implementations, and best practices,
written in applications-driven style. There is an emphasis on
practical applications, tutorials, guides, and case studies that
result in successful outcomes. Explicitly identified opinion
pieces, book reviews, and technology roadmapping comple-
ment articles to stimulate advancing the state of practice.
INSIGHT is dedicated to advancing the INCOSE objectives
of impactful products and accelerating the transformation of
systems engineering to a model-based discipline.
Topics to be covered include resilient systems, model-based

systems engineering, commercial-driven transformational
systems engineering, natural systems, agile security, systems
of systems, and cyber-physical systems across disciplines
and domains of interest to the constituent groups in the
systems engineering community: industry, government,
and academia. Advances in practice often come from lateral
connections of information dissemination across disciplines
and domains. INSIGHT will track advances in the state of the
art with follow-up, practically written articles to more rapidly
disseminate knowledge to stimulate practice throughout the
community.

Editor-In-Chief William Miller
insight@incose.net +1 908-759-7110

Layout and Design Chuck Eng
chuck.eng@comcast.net

Member Services INCOSE Administrative Office
info@incose.net +1 858 541-1725

* PLEASE NOTE: If the links highlighted here do not take you to
those web sites, please copy and paste address in your browser.

Permission to reproduce Wiley journal Content:
Requests to reproduce material from John Wiley & Sons publications
are being handled through the RightsLink® automated permissions
service.

Simply follow the steps below to obtain permission via the
Rightslink® system:

• Locate the article you wish to reproduce on Wiley Online Library
(http://onlinelibrary.wiley.com)

• Click on the ‘Request Permissions’ link, under the ‹ ARTICLE
TOOLS › menu on the abstract page (also available from Table of
Contents or Search Results)

• Follow the online instructions and select your requirements from
the drop down options and click on ‘quick price’ to get a quote

• Create a RightsLink® account to complete your transaction (and
pay, where applicable)

• Read and accept our Terms and Conditions and download your
license

• For any technical queries please contact
customercare@copyright.com

• For further information and to view a Rightslink® demo please
visit www.wiley.com and select Rights and Permissions.

AUTHORS – If you wish to reuse your own article (or an amended
version of it) in a new publication of which you are the author, editor
or co-editor, prior permission is not required (with the usual acknowl-
edgements). However, a formal grant of license can be downloaded free
of charge from RightsLink if required.

Photocopying
Teaching institutions with a current paid subscription to the journal
may make multiple copies for teaching purposes without charge, pro-
vided such copies are not resold or copied. In all other cases, permission
should be obtained from a reproduction rights organisation (see below)
or directly from RightsLink®.

Copyright Licensing Agency (CLA)
Institutions based in the UK with a valid photocopying and/or digital
license with the Copyright Licensing Agency may copy excerpts from
Wiley books and journals under the terms of their license. For further
information go to CLA.

Copyright Clearance Center (CCC)
Institutions based in the US with a valid photocopying and/or digital
license with the Copyright Clearance Center may copy excerpts from
Wiley books and journals under the terms of their license, please go
to CCC.

Other Territories: Please contact your local reproduction rights
organisation. For further information please visit www.wiley.com and
select Rights and Permissions.
If you have any questions about the permitted uses of a specific article,
please contact us.

Permissions Department – UK
John Wiley & Sons Ltd.
The Atrium,
Southern Gate,
Chichester
West Sussex, PO19 8SQ
UK
Email: Permissions@wiley.com
Fax: 44 (0) 1243 770620
or

Permissions Department – US
John Wiley & Sons Inc.
111 River Street MS 4-02
Hoboken, NJ 07030-5774
USA
Email: Permissions@wiley.com
Fax: (201) 748-6008

PERMISSIONS

ARTICLE SUBMISSION insight@incose.net

 October 2024 – 1 July 2024
 December 2024 – 1 September 2024
 February 2025 issue – 1 November 2024

 April 2025 issue – 2 January 2025
 June 2025 issue – 1 March 2025
 August 2025 issue – 1 May 2025

Publication Schedule. INSIGHT is published six times per year. Issue and article submission
deadlines are as follows:

For further information on submissions and issue themes, visit the INCOSE website: www.incose.org

© 2024 Copyright Notice.
Unless otherwise noted, the entire contents are copyrighted by INCOSE
and may not be reproduced in whole or in part without written permission by
INCOSE. Permission is given for use of up to three paragraphs as long as full
credit is provided. The opinions expressed in INSIGHT are those of the authors
and advertisers and do not necessarily reflect the positions of the editorial staff
or the International Council on Systems Engineering. ISSN 2156-485X; (print)
ISSN 2156-4868 (online)

Officers
President: Ralf Hartmann, INCOSE Fellow, proSys
President-Elect: Michael Watson, Leidos Dynetics

Secretary: Stueti Gupta, BlueKei Solutions
Treasurer: Alice Squires, ESEP, University of Arkansas

Directors
Director for Academic Matters: Alejandro Salado, University

of Arizona
Director for Outreach: Bernardo Delicado, ESEP, Indra

Engineering & Technology
Director for Americas Sector: Renee Steinwand, ESEP, Booz

Allen Hamilton
Director for EMEA Sector: Sven-Olaf Schulze, CSEP,

Huennemeyer Consulting GmbH
Director for Asia-Oceania Sector: Quoc Do, ESEP, Frazer-

Nash Consultancy
Technical Director: Olivier Dessoude, Naval Group S.A.
Deputy Technical Director**: Tami Katz, Ball Aerospace

Services Director: Heidi Davidz, ESEP, ManTech
International Corporation

Director for Strategic Integration: David Long, INCOSE
Fellow, ESEP, Blue Holon

Director, Corporate Advisory Board: Michael Dahhlberg,
ESEP, KBR

Deputy Director, Corporate Advisory Board**: Robert
Bordley, General Motors Corporation

Executive Director**: Steve Records, INCOSE

** Non voting

IN
SID

E
TH

IS ISSU
E

A
U

G
U

ST 2O
24

VOLUM
E 27/ ISSUE 4

5

Readership
INSIGHT reaches over 23,000 members and CAB associates and
uncounted employees and students of more than 130 CAB organizations
worldwide. Readership includes engineers, manufacturers/purchasers,
scientists, research and development professionals, presidents and
chief executive officers, students, and other professionals in systems
engineering.

Issuance Circulation
2024, Vol 27, 6 Issues 100% Paid

Contact us for Advertising and Corporate Sales Services
We have a complete range of advertising and publishing solutions
profes sionally managed within our global team. From traditional print-
based solutions to cutting-edge online technology the Wiley-Blackwell
corporate sales service is your connection to minds that matter. For
an overview of all our services please browse our site which is located
under the Resources section. Contact our corporate sales team today to
discuss the range of services available:

• Print advertising for non-US journals
• Email Table of Contents Sponsorship
• Reprints

• Supplement and sponsorship opportunities
• Books
• Custom Projects
• Online advertising

Click on the option below to email your enquiry to your nearest
office:

• Asia and Australia corporatesalesaustralia@wiley.com
• Europe, Middle East and Africa (EMEA)

corporatesaleseurope@wiley.com
• Japan corporatesalesjapan@wiley.com
• Korea corporatesaleskorea@wiley.com

USA (also Canada, and South/Central America):
• Healthcare Advertising corporatesalesusa@wiley.com
• Science Advertising Ads_sciences@wiley.com
• Reprints Commercialreprints@wiley.com
• Supplements, Sponsorship, Books and Custom Projects

busdev@wiley.com

Or please contact: Marcom@incose.net

CONTACT
Questions or comments concerning:

Submissions, Editorial Policy, or Publication Management
Please contact: William Miller, Editor-in-Chief
insight@incose.net

Advertising — please contact:
Marcom@incose.net

Member Services – please contact: info@incose.org

ADVERTISER INDEX Month Volume 27-4
Catia Magic – Dessault Systemes inside front cover
Weber State Univ. Master of Science in Systems Engineering page 7
Systems Engineering – Call for Papers page 8
Missouri University Science & Technology page 46
Join INCOSE back inside cover
Upcoming Events back cover

ADVERTISE

CORPORATE ADVISORY BOARD — MEMBER COMPANIES

Aerospace Corporation, The
Airbus
AM General LLC
Analog Devices, Inc.
Arcfield
Australian National University
AVIAGE SYSTEMS
Aviation Industry Corporation of China, LTD
BAE Systems
Bechtel
Becton Dickinson
Belcan Engineering Group LLC
BMT Canada
Boeing Company, The
Booz Allen Hamilton Inc.
Boston Scientific Corporation
C.S. Draper Laboratory, Inc.
California State University Dominguez Hills
Carnegie Mellon Univ. Software Engineering Institute
Change Vision, Inc.
Colorado State Univ. Systems Engineering Programs
Cornell University
Cranfield University
Cubic Corporation
Cummins, Inc.
Cybernet MBSE Co, Ltd
Dassault Systèmes
Defense Acquisition University
Deloitte Consulting, LLC
Denso Create Inc
DENTSU SOKEN INC
Drexel University
Eaton
Eindhoven University of Technology
EMBRAER
FAMU-FSU College of Engineering
Federal Aviation Administration (U.S.)
Ford Motor Company
GE Aerospace
General Dynamics
General Motors
George Mason University
Georgia Institute of Technology
Hitachi Energy
IBM
Idaho National Laboratory
ISAE – Supaero

ISDEFE
IVECO Group
Jama Software
Jet Propulsion Laboratory
John Deere & Company
Johns Hopkins University
KBR, Inc.
KEIO University
L3Harris Technologies
Lawrence Livermore National Laboratory
Leidos
LEONARDO
Lockheed Martin Corporation
Los Alamos National Laboratory
Loyola Marymount University
Magna
ManTech International Corporation
Marquette University
Massachusetts Institute of Technology
MBDA (UK) Ltd
Medtronic
MetaTech Consulting Inc.
Missouri University of Science & Technology
MITRE Corporation, The
Mitsubishi Electric Corporation
Mitsubishi Heavy Industries, Ltd
Modern Technology Solutions Inc
National Aeronautics and Space Admin. (NASA)
National Reconnaissance Office (NRO)
National Security Agency Enterprise Systems
Naval Postgraduate School
Nissan Motor Co, Ltd
Northrop Grumman Corporation
Pacific Northwest National Laboratory
Pennsylvania State University
Petronas International Corporation Limited
Prime Solutions Group, Inc
Project Performance International (PPI)
Purdue University
QRA Corporation
Rolls-Royce
RTX
Saab AB
SAIC
Sandia National Laboratories
Saudi Railway Company
SENSEONICS

Shanghai Formal-Tech Information Technology Co., Ltd
Shell
Siemens
Sierra Nevada Corporation
Singapore Institute of Technology
Southern Methodist University
SPEC Innovations
Stevens Institute of Technology
Strategic Technical Services LLC
Swedish Defence Materiel Administration (FMV)
Systems Planning and Analysis
Taiwan Space Agency
Tata Consultancy Services
Thales
The George Washington University
The University of Arizona
The University of Utah
Torch Technologies
TOSHIBA Corporation
Trane Technologies
Tsinghua University
UK MoD
Universidade Federal De Minas Gerais
University of Alabama in Huntsville
University of Arkansas
University of California San Diego
University of Connecticut
University Of Lagos
University of Maryland
University of Maryland Global Campus
University of Maryland, Baltimore County
University of Michigan, Ann Arbor
University Of Nairobi
University of New South Wales, The Canberra
University of Southern California
University of Texas at El Paso (UTEP)
US Department of Defense
Veoneer US Safety Systems, LLC
Virginia Tech
Volvo Cars Corporation
Volvo Construction Equipment
Wabtec Corporation
Weber State University
Woodward Inc
Worcester Polytechnic Institute (WPI)
Zuken, Inc

A
U

G
U

ST 2O
24

VOLUM
E 27/ ISSUE 4

6

e are pleased to publish
the August 2024 INSIGHT

issue published cooperatively
with John Wiley & Sons as

the systems engineering practitioners’
magazine. The INSIGHT mission is to
provide informative articles on advancing
the practice of systems engineering and
to close the gap between practice and the
state of the art as advanced by Systems
Engineering, the Journal of INCOSE also
published by Wiley.

The focus of this August issue of
INSIGHT is theoretical foundations:
impacts on practice, featuring the
contributions of MBSE Patterns Working
Group chair and INCOSE fellow William
(Bill) Schindel. Bill was asked by Sandy
Friedenthal and Heinz Stoewer beginning
in 2019 to provide materials from his past
work on theoretical foundations for the
preparation of the forthcoming Systems
Engineering Vision 2035 led by Sandy,
Heinz, and Garry Roedler published
in 2021 (www.incose.org/publications/
se-vision-2035). Bill’s contributions
towards the Vision 2035 were reviewed
by Tom McDermott, Chris Paredis, David
Rousseau, Jon Wade, and Michael Watson
(current INCOSE president-elect).

The Vision 2035 was preceded by the
Systems Engineering Vision 2020 (2007)
and A World in Motion: Systems Engineer-
ing Vision 2025 (2014). In particular, the
Vision 2025 called for stronger foundations
noting that systems engineering practice
is only weakly connected to the underlying
theoretical foundation, and educational pro-
grams focus on practice with little emphasis
on underlying theory. The Vision 2025
objective was that the theoretical foundation
of systems engineering encompasses not only
mathematics, physical sciences, and systems
science, but also human and social sciences.

William Miller, insight@incose.net

FROM THE
EDITOR-IN-CHIEF

FR
O

M
 TH

E
ED

ITO
R

-IN
-CH

IEF

W This foundational theory is taught as a nor-
mal part of systems engineering curricula,
and it directly supports systems engineering
methods and standards. Understanding the
foundation enables the systems engineer to
evaluate and select from an expanded and
robust toolkit, the right tool for the job.

Bill asserts “that much of that foundation
is closer than realized, not always requiring
discovery ‘from scratch.’ There are well-
established foundations of STEM and
other disciplines, discovered and highly
successful during three centuries of the
transformation of human life. These
foundations await a wider awareness and
exploitation by the systems community,
providing a powerful starting point for
what will follow. The foundations are both
quantitative and qualitative, and richly
endowed with humanistic aspects.” Bill
summarizes three phenomenon-based
elements of that foundation, providing
already known starting points: the
systems phenomenon, the value selection
phenomenon, and the model trust by
groups phenomenon.” All these elements
have significant implications for systems
engineering practitioners, educators, and
researchers. We thank Bill along with co-
author Troy Peterson.

We lead the August INSIGHT with Bill
Schindel’s metaphorical thought piece
questioning the approach to systems
engineering as described in the INCOSE
Systems Engineering Handbook: “Maps or
Itineraries? A Systems Engineering Insight
from Ancient Navigators.” Processes
and procedures are the heart of current
descriptions of systems engineering and
enterprise-specific business process models
reinforce this focus on process and proce-
dure. The attention devoted to describing
process, sequence, or activity usually
exceeds by orders of magnitude the amount

devoted to describing the information flow-
ing through that process. Scholarly works
suggest the ancients navigated by itinerar-
ies that preceded the innovation of maps.
These itineraries listed ports and landmarks
to facilitate commercial and military sailing
and lists of locations and distances on land
routes. An itinerary is a sequence of steps
whose performance is expected to move us
from point A to point B. By contrast, a map
describes the geographic space of interest,
identifying points in geographic space and
the relationships between those points.
A map is a relational model that answers
an infinity of questions that may arise in
various situations. A map is not a proce-
dure. This is important to understanding
the current state of systems engineering.
Metaphorically, systems engineers must
“navigate” a type of “journey,” like their an-
cient navigator counterparts. The “journey”
of interest here for the systems engineer is
an engineering project that is 1) more com-
plex and abstract than geographic travel,
2) has a starting point and destination, 3)
with opportunities to become lost or dis-
oriented, 4) and with risks of not reaching
the desired destination. The limitations of
procedural checklists are well known: a) all
the required steps have been performed,
b) the checklist boxes are all checked, but
c) the result is not acceptable. What is
missing is not just some overlooked steps
to record, but relational map knowledge
that cannot be represented as process steps
alone, because is it about a map of some-
thing different than process space. This is
about the underlying nature of design and
exploration of spaces, and not about a cer-
tain styles of engineering processes versus
others. The history of science, engineering,
and mathematics offers evidence that im-
proved cognitive maps of spaces have had
profound impact in advancing those fields.

A
U

G
U

ST 2O
24

VOLUM
E 27/ ISSUE 4

7

FR
O

M
 TH

E
ED

ITO
R

-IN
-CH

IEF

Congratulations

Paul White,
ESEP!

Weber State University recognizes Paul White for earning
the Expert Systems Engineering Professional Certification!
Paul is a valued instructor and industry advisory board
member for our Master of Science in Systems Engineering.
Paul has 23 years of knowledge and experience in the
practice of Systems Engineering.

Learn more about our online
MASTER OF SCIENCE IN SYSTEMS ENGINEERING

weber.edu/msse

The second article, “Got Phenomena?
Science-Based Disciplines for Emerging
Systems Challenges,” takes on the oft stated
pronouncements that systems engineering
is not a “real” engineering discipline such
as civil. mechanical, chemical, and electri-
cal engineering. The argument is that these
fields have “real physical phenomena,”
“hard science” based laws, and first prin-
ciples, claiming systems engineering lacks
equivalent phenomenological foundations.
We counter that the laws and phenomena
of traditional disciplines are less funda-
mental than the system phenomenon from
which they spring. This is a reminder of
emerging higher disciplines, with phe-
nomena, first principles, and physical laws,
with the system phenomenon being the
wellspring of engineering opportunities
and challenges. Governed by Hamilton’s
principle, the system phenomenon is a
traditional path for derivation of equations
of motion or physical laws of so-called
“fundamental” physical phenomena of
mechanics, electromagnetics, chemistry,
and thermodynamics. Examples include
ground vehicles, aircraft, marine vessels,
biochemical networks, health care, distri-
bution networks, market systems, ecolo-
gies, and the Intent of things (IoT).

The third article, “Explicating System
Value through First Principles: Re-
Uniting Decision Analysis with Systems
Engineering,” is essential to delivering
system value. The systems engineering
profession has had a significant focus on
improving systems engineering processes.
While process plays an important role, the
focus on process is often at the expense of
foundational engineering axioms and their
contribution to system value. Consequently,
systems engineers are viewed as process
developers and managers versus technical
leaders with a deep understanding of

how system interactions are linked to
stakeholder value. This paper describes
how pattern-based systems engineering
(PBSE), as outlined within INCOSE’s
model-based systems engineering (MBSE)
initiative, explicates system value through
modeling of first principles, re-uniting
systems engineering and decision analysis
capabilities.

The fourth article, “Innovation, Risk,
Agility, and Learning, Viewed as Optimal
Control and Estimation,” summarizes
how optimal control and estimation
in “noisy” environments provides a
framework to advance understanding
of system innovation life cycles and
management of decision risks and
learning. The ISO15288 process framework
and its exposition in the INCOSE
Systems Engineering Handbook describe
system development and other life cycle
processes. Concerns about improving the
performance of processes in dynamic,
uncertain, and changing environments
are partly addressed by “agile” systems
engineering approaches. Both are typically
described in the procedural language of
business processes, so it is not always
clear whether the different approaches are
fundamentally at odds, or just different
sides of the same coin. Describing the
target system, its environment, and the life
cycle management processes using models
of dynamical systems allows us to apply
earlier technical tools, such as the theory of
optimal control in noisy environments, to
emerging innovation methods.

The final article is “What Is the Smallest
Model of a System?,” How we represent
systems is fundamental to the history of
mathematics, science, and engineering.
Model-based engineering methods shift the
nature of representation of systems from
historical prose forms to explicit data struc-

tures more directly comparable to those of
science and mathematics. However, using
models does not guarantee simpler rep-
resentation—indeed a typical fear voiced
about models is that they may be too com-
plex. Minimality of system representations
is of both theoretical and practical interest.
The mathematical and scientific interest is
that the size of a system’s “minimal repre-
sentation” is one definition of its complexi-
ty. The practical engineering interest is that
the size and redundancy of engineering
specifications challenge the effectiveness
of systems engineering processes. How
can systems work be made 10:1 simpler to
attract a 10:1 larger global community of
practitioners?

We hope you find INSIGHT, the prac-
titioners’ magazine for systems engineers,
informative and relevant. Feedback from
readers is critical to INSIGHT’s quality.
We encourage letters to the editor at
insight@incose.net. Please include “letter to
the editor” in the subject line. INSIGHT
also continues to solicit special features,
standalone articles, book reviews, and
op-eds. For information about INSIGHT,
including upcoming issues, see https://
www.incose.org/products-and-publications/
periodicals#INSIGHT. For information about
sponsoring INSIGHT, please contact the
INCOSE marketing and communications
director at marcom@incose.net.

https://weber.edu/msse

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

8

Systems Engineering: The Journal of The International Council on Systems Engineering

Call for Papers
he Systems Engineering journal is intend ed to be a primary
source of multidisciplinary information for the systems engineer-
ing and management of products and services, and processes of
all types. Systems engi neering activities involve the technologies

and system management approaches needed for
• definition of systems, including identi fication of user

requirements and technological specifications;
• development of systems, including concep tual architectures,

tradeoff of design concepts, configuration management during
system development, integration of new systems with legacy
systems, inte grated product and process development; and

• deployment of systems, including opera tional test and
evaluation, maintenance over an extended life-cycle, and
re-engineering.

Systems Engineering is the archival journal of, and exists to serve the
following objectives of, the International Council on Systems Engineer-
ing (INCOSE):

• To provide a focal point for dissemination of systems
engineering knowledge

• To promote collaboration in systems engineering education
and research

• To encourage and assure establishment of professional
standards for integrity in the practice of systems engineering

• To improve the professional status of all those engaged in the
practice of systems engineering

• To encourage governmental and industrial support for research
and educational programs that will improve the systems
engineering process and its practice

The journal supports these goals by provi ding a continuing, respected
publication of peer-reviewed results from research and development in
the area of systems engineering. Systems engineering is defined broadly
in this context as an interdisciplinary approach and means to enable the
realization of succes s ful systems that are of high quality, cost-effective,
and trust worthy in meeting customer requirements.

The Systems Engineering journal is dedi cated to all aspects of the
engineering of systems: technical, management, economic, and social.
It focuses on the life-cycle processes needed to create trustworthy and
high-quality systems. It will also emphasize the systems management
efforts needed to define, develop, and deploy trustworthy and high
quality processes for the production of systems. Within this, Systems
Engineer ing is especially con cerned with evaluation of the efficiency and
effectiveness of systems management, technical direction, and integra-
tion of systems. Systems Engi neering is also very concerned with the
engineering of systems that support sustainable development. Modern
systems, including both products and services, are often very knowl-
edge-intensive, and are found in both the public and private sectors.
The journal emphasizes strate gic and program management of these,
and the infor mation and knowledge base for knowledge princi ples,
knowledge practices, and knowledge perspectives for the engineering of

systems. Definitive case studies involving systems engineering practice
are especially welcome.

The journal is a primary source of infor mation for the systems engineer-
ing of products and services that are generally large in scale, scope,
and complexity. Systems Engineering will be especially concerned with
process- or product-line–related efforts needed to produce products that
are trustworthy and of high quality, and that are cost effective in meeting
user needs. A major component of this is system cost and operational
effectiveness determination, and the development of processes that
ensure that products are cost effective. This requires the integration of a
number of engi neering disciplines necessary for the definition, devel-
opment, and deployment of complex systems. It also requires attention
to the life cycle process used to produce systems, and the integration
of systems, including legacy systems, at various architectural levels.
In addition, appropriate systems management of information and
knowledge across technologies, organi zations, and environments is also
needed to insure a sustainable world.

The journal will accept and review sub missions in English from any
author, in any global locality, whether or not the author is an INCOSE
member. A body of international peers will review all submissions, and
the reviewers will suggest potential revisions to the author, with the intent
to achieve published papers that

• relate to the field of systems engineering;
• represent new, previously unpublished work;
• advance the state of knowledge of the field; and
• conform to a high standard of scholarly presentation.

Editorial selection of works for publication will be made based on con-
tent, without regard to the stature of the authors. Selections will include
a wide variety of international works, recognizing and supporting the
essential breadth and universality of the field. Final selection of papers
for publication, and the form of publication, shall rest with the editor.

Submission of quality papers for review is strongly encouraged. The
review process is estimated to take three months, occasionally longer for
hard-copy manuscript.

Systems Engineering operates an online submission and peer review
system that allows authors to submit articles online and track their
progress, throughout the peer-review process, via a web interface.
All papers submitted to Systems Engineering, including revisions or
resubmissions of prior manuscripts, must be made through the online
system. Contributions sent through regular mail on paper or emails with
attachments will not be reviewed or acknowledged.

All manuscripts must be submitted online to Systems Engineering at
ScholarOne Manuscripts, located at:
 https://mc.manuscriptcentral.com/SYS
Full instructions and support are available on the site, and a user ID and
password can be obtained on the first visit.

T

https://mc.manuscriptcentral.com/SYS

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

9

INSIGHT Special Feature

INTRODUCTION

 ABSTRACT
Processes and procedures are the heart of current descriptions of systems engineering. The “vee diagram,” ISO 15288, the INCOSE
Systems Engineering Handbook, and enterprise-specific business process models focus attention on process and procedure. However,
there is a non-procedural way to view systems engineering. This approach is to describe the configuration space “navigated” by
systems engineering, and what is meant by system trajectories in that space, traveled during system life cycles. This sounds abstract
because we have lacked explicit maps necessary to describe this configuration space. We understand concrete steps of a procedure,
so we focus there. But where do these steps take us? And what does “where” mean in this context? Clues are found in recent
discoveries about ancient navigation, as well as later development of mathematics and physics. This paper, part I of a case for
stronger model-based systems engineering (MBSE) semantics, focuses on the underlying configuration space inherent to systems.

Maps or Itineraries? A
Systems Engineering
Insight from Ancient
Navigators
William D. Schindel, schindel@ictt.com
Copyright © 2015 by William D. Schindel. Published and used by INCOSE with permission.

[Editor: This paper for systems engineering foundations refers to the Systems Engineering Vision 2025 (Copyright 2014 by the
International Council on Systems Engineering), INCOSE Systems Engineering Handbook v3.1 (Copyright 2015 by INCOSE), and
ISO 15288:2015.]

Systems engineering processes.
In contemporary discussion of
systems engineering, we encounter
descriptions of “vees,” waterfalls,

spirals, and other picturesque metaphors
for the work process. In industry or
enterprise-specific descriptions (ISO
15288:2015, INCOSE Systems Engineering
Handbook 2015) of such work processes,
the amount of ink and attention devoted
to describing process, sequence, or activity
usually exceeds by orders of magnitude
the amount devoted to describing the
information flowing through that process.
We ask here why this is the case, and
whether there is a more optimum future
state for the effective practice of systems
engineering. This inquiry is separately
extended to include the life cycle trajectory
of systems in (Schindel 2015).

MAPS VERSUS ITINERARIES: CONCEPTS OF
SPACE
Maps and Itineraries of the Ancient
Navigator

In an exhibition at New York Universi-
ty’s Institute for the Study of the Ancient
World, scholars (Casagrande-Kim et al.
2013) suggested that ancient Greco-Roman
navigators did not possess the “ancient
maps” of the sort later attributed to them.
Instead, it was asserted that these images
were generated later, during the Middle
Ages, and attributed to the thinking and
artifacts of ancient navigators:

 “Why do we have virtually no ancient
maps of the ancient world?” asked a
reviewer of the exhibition (Kaylan 2013).
“After all, sailors, traders and soldiers
had to find their way around. The show’s

curator, Roberta Casagrande-Kim, distin-
guishes between a map and an itinerary.
The latter ‘must have existed aplenty, but
being strictly functional probably deteri-
orated through overuse,’ she says. ‘A map,
however small its focus, suggests a kind of
implicit overview, and that is the show’s
subject.’” (Emphases added)

In describing how human concepts of
space and its representations have evolved,
these scholars reported that “Greeks and
Romans usually employed what are known
as periploi (‘coastal navigations’), which list-
ed ports and landmarks to facilitate com-
mercial and military sailing, and itineraria
(‘journeys’), lists of locations and distances
based on land routes” (Casagrande-Kim et
al, 2013) (emphases added).

 Figure 1 suggests the conceptual dif-

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

10

ference between a map and an itinerary.
An itinerary is a sequence of steps whose
performance is expected to move us from
Point A to Point B. By contrast, a map
describes the geographic space of interest,
identifying points in geographic space and
the relationships between those points. A
map is a relational model that answers an
infinity of questions that may arise in vari-
ous situations. A map is not a procedure. By
contrast, an itinerary is a stepwise proce-
dure intended for a limited purpose.

A key point examined by scholars is
the concept of geographic space held by
humans at the time these evolving artifacts
were in development (Barkowski 2002).
The important notion here is that a map
would not emerge sooner than the related
cognitive concepts of the space it describes.
To appreciate this, we must imagine a time
when concepts of geographic space were
not yet as developed as today. For example,
recall the development of the Mercator
cylindrical projection of a sphere (Figure 2),
and consider the practical impacts of con-
ceptual challenges that would have preceded
its availability.

For purposes of this discussion, the

important idea is that people can lack a con-
cept of space that is adequate to what they
are trying to do in that space. It is difficult to
imagine being without an already familiar
concept, but important to understanding
the current state of systems engineering. We
suggest that equally fundamental concepts
are not yet in the regular cognitive maps of
the current systems engineer.

Maps and Itineraries of the Systems
Engineer

Systems engineering journeys. At least
metaphorically speaking, systems engineers
must “navigate” a type of “journey, ” like
their ancient navigator counterparts. The
“journey” of interest here for the systems
engineer is an engineering project:

 ■ More complex and abstract than geo-
graphic travel, but …

 ■ it has a starting point and destination,
 ■ with opportunities to become lost or
disoriented,

 ■ with risks of not reaching the desired
destination.

We will later argue that this is more than
just a metaphorical comparison. But first,

let us consider the sorts of practical impli-
cations at stake for systems engineers.

The limitations of procedural check-
lists. Experienced practitioners usually
admit the following problem situation is a
familiar one:

 ■ The junior engineer reports having
performed all the required steps

 ■ All the checklist boxes are checked
 ■ But the result is not acceptable.

Why does the junior navigator not
recognize, much less avoid, the problem?
Often, it is because of deeper knowledge
that the senior navigator has internalized
through experience, but which is not
represented in the official process steps. We
will suggest here that what is missing is not
just some overlooked steps to record, but
relational map knowledge that cannot be
represented as process steps alone, because
is it about a map of something different
than process space.

Are we there yet? Whether the systems
engineering journey in a project is based
on waterfalls, spirals, or other metaphorical
process approaches, certain aspects are
inherently iterative, repeating certain
activities until a sufficiency is achieved
(Figure 3). This is about the underlying
nature of design and exploration of
spaces, and not about a certain styles of
engineering processes versus others.

So, even when individual process steps
are clearly defined, a frequently encoun-
tered and important question about a
systems engineering process is “are we done
yet?” This question is answered by different
means in different organizations:

 ■ By examining the situation in an under-
lying information space, or else . . .

 ■ By referring to a checklist of steps that
should have been completed, or else . . .

 ■ By referring to schedule or leadership
requiring that we be done by now, or …

 ■ By even more arbitrary judgments.

We will argue here that “are we done
yet?” should be replaced by “are we there
yet?,” after we better solidify what “there”
and “where” mean.

The above suggest that the practical
implications at stake here are significant
for the future of systems engineering.
The history of science, engineering, and
mathematics also offers evidence that
improved cognitive maps of spaces have
had profound impact in advancing those
fields. Two of the most famous cases are the
geometrizations offered by Descartes and
Hilbert.

The geometrization of algebra. Rene
Descartes is credited (Moerdijk 2012) with

Figure 1. Map versus itinerary

Itinerary
(What am I doing?)

Map!
(Where am I?)

When they eventually did emerge, maps represented
a newer idea of the nature of “where.”

≠

X R X R

N

180W 180E

0

parallel through P

true scale on equator

P’
P’(x,y)P

R
S

X

axis

central
meridian

central
meridian

meridian
through P

y()y

x

Figure 2. The Mercator projection of sphere onto cylinder

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

11

moving understanding of symbolic algebra
(in particular, algebraic relationships)
into a geometric space setting, in which
spatial understanding could contribute
to understanding of abstract symbolic
mathematics, viewed in “Cartesian”
coordinates (Figure 4).

supporting a geometrical view of mathe-
matical function (Figure 5). The tools of the
modern controls engineer and communi-
cations engineer, among others, have been
profoundly impacted by geometry-based
intuitive basis for more abstract mathemat-
ical operations: distance (metric spaces),
projections, inner products (including con-
volutions and frequency transforms). These
become applicable to “spatialized” system
configuration space, in the MBSE approach
described below making what was abstract
more concrete and intuitive.

Clues About a Stronger Semantic Model of
System Space

It is relatively clear that the description
of a sequence of systems engineering
process steps (as in ISO/IEC 15288, the
INCOSE Systems Engineering Handbook,
etc.) could be thought of as the metaphor-
ical equivalent of the ancient traveler’s
itinerary. But, in the same vein, what would
be the systems engineering equivalent of
the geographic map for such a journey?
Through what space is the systems engineer
traveling? This is not so immediately clear,
but we can begin with what it is not.

A map of the space through which the
systems engineer travels:

 ■ is not a list of SE tasks
 ■ is not a model of the SE process —
ancient mariners were not traveling
through “step space,” but “geographic
space.”

A geographic map describes:
 ■ where we want to end up, along with
other points in geographic space where
we might conceivably be at a given time

 ■ key relationships between these points,
including distance metrics

 ■ expressed in 1, 2, or 3 dimensions: de-
grees of freedom in geographic space.

So, what is the conceptual systems space
through which the systems engineer is
navigating? To help answer this, here are a
few things that we also know:

 ■ The work of systems engineering pro-
duces, and consumes, information

 ■ The space through which the systems
engineer navigates would be a map
about that information, not the steps of
the travel process

 ■ We assert that the space we are inter-
ested in should describe the space of
possible places for a system of interest
to be, good or not, and how they are
related to each other: the configuration
space of the system

 ■ We know one kind of map about
information: an information model
(for example, an entity-relationship or
similar model)

 ■ The hard sciences provide, in the maps
for physics, chemistry, thermodynam-
ics, and other domains, representations
of underlying relationships (laws)
• Frequently represented in the form of

mathematical equations.
• These relationships and their impact

on systems space are the focus of
attention: Imagine instead trying
to learn chemistry by studying the
process of cooking!

 ■ Can systems science provide maps in
the form of underlying systemic rela-
tionships?

Semantic models. INCOSE MBSE
thought leadership has called for “stronger
semantic models” (Long 2014a and 2014b)
to support the future progress of mod-
el-based systems engineering. This refers to
the notion that, while current and historical
modelling language and data exchange
standards provide “metamodel” underpin-
nings, additional progress is needed.

We strongly agree with the call for stron-
ger underlying MBSE semantics. Before
discussing that subject, we recall what is
meant here by “semantics”.

There is an unfortunate practice in
popular culture to use the term “semantics”
as a dismissive pejorative, as if that term
meant “insignificant detail” or “hair-split-
ting.” To the contrary, “semantics” defines
fundamental meaning, whether referring
to formal engineering models, databases,
cognition, or everyday natural language.
Nothing could be more important to the
success of human endeavor than shared
semantics (meaning) that is sufficient for
the activities in which humans engage. For

High Level
Requirements

Process Detail Level
Requirements

Process
High Level

Design
Process

High Level
Requirements

Process Detail Level
Requirements

Process

Detail Level
Design
Process

Component
Test Process

Acquisition,
Fabrication

Process

Subsystem
Integration &
Test Process

Subsystem
Integration &
Test Process

System
Demonstration,

Validation

High Level
Design
Process

System

Subsystem

Component

Figure 3. Iteration Is inherent to systems engineering; so when are we done?

David Hilbert
1862 –1943

Vector Spaces

Normed Spaces

Hilbert
Spaces

Figure 5. Geometrization of function
space, by David Hilbert

Figure 4. Geometrization of algebra, by
Rene Descartes

z
Cartesian Coordinates

Rene Descartes
1596 –1650

c

P(a,b,c)

b

a

y

x

The geometrization of mathemat-
ical functions. As system models also
add modeling of (infinite dimensional)
behavior, Hilbert Space (Simmons 1963)
provided the next required generalization,

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

12

purposes of this paper, we define “seman-
tics” of a conceptual space as the degrees of
freedom of that space, and the relationships
between them — the “map” of the space.

An example of “semantics” in the
technical space of science, engineering,
and mathematics is Newton’s second
law, sometimes expressed in equation
form: F = mA. In discovering this natural
law, Newton not only arrived at a
quantitative relationship, but also a stronger
(and inherently circular) definition of
the concepts (mass, force, acceleration)
that it relates. This was not just a matter
of refining dictionary definitions, but a
fundamental recasting of the relational
cognitive map of the natural world, with
profound practical consequences. (The
same was true for those who followed
Newton, refining that map.)

These three things are inter-related:
 ■ System configuration space—the space
described by the degrees of freedom
of conceivable systems, in which
each point represents one system
configuration (Figure 6)

 ■ Relational models, constraining those
same degrees of freedom with respect
to each other, often mathematical or
other relational models (including
various types of information models)

 ■ Semantic “meaning” expressed in the
form of relationships

Figure 6, representing a subspace of
system configuration space, is not the
same as the equations, words, or model
views (for example, SysML) that might be
used to describe the set of instance points
within it. This is an important reminder
that a view of a model is not a direct view
of the configuration space it describes, but
instead a compressed representation of
constraints that define such a configuration
space — just as Descartes noted that
viewing an algebraic equation is not the
same as viewing the geometric space it
describes — and both have their place.
(Note that system models describe both
discrete and continuous degrees of
freedom, as shown in Figure 6.)

What we usually refer to as “modelling
languages” (for example, mathematical
languages, database modelling languag-
es, systems modelling languages) are not
themselves the semantics of the spaces
they will be used to describe. The descrip-
tion of English as a language does not
itself describe the struggles of Hamlet that
Shakespeare encoded using English.

However, we know that architectural
patterns, expressed in those modelling
languages, can be used to describe the
semantics of train systems or manufactur-
ing processes. That is, the semantics of a
lower-level language can be used to encode
the semantics of a higher level “language,”
formalizing the latter (Schindel 2011b).
Semantic models of systems engineering
occur at different levels of abstraction. The
following example list proceeds from more
specific to more abstract cases:

1. Model of a specific automobile instance,
configured as sought by its owner

 ■ Example of use: Represents whether
cruise control option is equipped

2. Model of a product line of automobiles,
optimized by designers and planners
(ISO26550 2013)

 ■ Example of use: Defines which automo-
bile models allow cruise control option

3. Architectural framework model (ISO
42010 2011) of consumer automobiles,
shared across suppliers active in the
automotive domain

 ■ Example of use: Defines semantics,
behavior of “cruise control feature”

4. Metamodel of a specific system mod-
elling language, semantically capable
of expressing concepts appropriate to
its intended use, along with syntax and
views specific to that language

 ■ Example of use: Defines how stakehold-
er features will appear in model views

5. Metamodel of concepts sufficient for
the purposes of systems engineering or
science, independent of the modelling
languages that will express them in
specific cases.

 ■ Example of use: Defines the semantics
of “stakeholder feature”

The entire configuration “system DNA”
of a given system configuration or series of
life cycle configurations can practically be
captured by properly configured modelling,
product lifecycle management (PLM), or
other tools, as further illustrated in Schin-
del, Lewis, Sherey, and Sanyal (2015).

The dimensionality of this configuration
space is high, so we don’t typically view the
whole space at one time, preferring instead
to view sub-spaces. Figure 7 is a simple
example.

The constraints that result in the curve of
Figure 7 remind us that a further compres-
sion of configuration instance information
is provided by modelled relationships:
• Mathematical equations (couplings,

dependencies)
• Information models (E-R, SysML, IDEF,

etc.)
• Requirements statements, viewed as

transfer functions (Schindel 2005b).

Moreover, pattern-based systems engi-
neering (PBSE) methods permit even fur-
ther compression of these views (Schindel
2011b) — layers of compression are likewise
possible. Most of the sub-space relation-
ships are not linear, so certain ideas such as
linear combinations and frequency domain
transfer functions won’t apply in the linear
sense. However, other geometric aspects,
such as distance norms and projections, do
still apply. Of course, we’d likely add many
more degrees of freedom (weight, range,
etc.) — so system maps will tend to be high
dimension, and subject to “slicing” into
multiple views. During innovation / de-
velopment cycles, and some life cycles, the
“current configuration” may involve sets of
ranges or lists, instead of individual points,
so the trajectory becomes an ordered series
of envelopes.

MOVING TO A STRONGER SEMANTIC MODEL
OF SYSTEM CONFIGURATION SPACE

What are the degrees of freedom
(relatable variables) needed by system
models to describe system space? Do
system modeling languages (SysML, OPM,
IDEF, etc.) answer this? Some thought

X1 = f (X2, X3) X = g (Y, Z)

Figure 6. System configuration (degrees of freedom) space, constrained by (discrete
and continuous) modeled relationships representing semantics, laws, designs

Figure 7. A simple sub-space of
configuration space

Fu
el

 E
co

no
m

y (
m

pg
) System Configuration Map—

Two Degrees of Freedom

Vehicle Cost ($)

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

13

leaders (Long 2014a and 2014b) agree
that such languages are more syntactical
or view-oriented than about underlying
semantics, with none of them currently
providing a complete semantic model of
the systems they describe. Based on the
above arguments, it is perhaps too much
to expect that they should, because they
are intended to provide views into such
an underlying system configuration space.
Nevertheless, many of the ideas described
in these modeling languages and other
frameworks (for example, OMG 2012
and ISO 10303 U’Ren 2003) do cover a
significant part of the territory. Along
with a language description, modeling
language specifications typically include
an effort to describe the underlying system
configuration space (even if entangled
a bit in the description of the modeling
language), for lack of a pre-existing
community agreement on that underlying
space.

In the spirit of the physical sciences,
we therefore have asked “What is the
smallest model of a system?” for effective
descriptions in the work of engineering and
science, and independent of any specific
modeling language. Pursued over a number
of years and tests, this work showed that
contemporary system models are often
both semantically too big (redundant) and
too small (missing important information),
at the same time (Schindel 2011b).

In our practice with others across
multiple system domains (Schindel and
Smith 2002, Bradley et al. 2010, Schindel
2012b, Berg 2014), this led over several
decades to a formal model of the semantics
of the underlying system space, referred to
as the S*Metamodel. Figure 8 illustrates a
key subset summary of the longer formal
S*Metamodel specification (ICTT 2009
and 2013).

Formal mappings (profiles) of the
S*Metamodel have been created for a

number of existing third-party COTS
modeling tools, engineering databases,
PLM systems, and standards-based
language offerings. These increase the
power of the existing industry assets by
strengthening their expressive power and
semantic compatibility, in comparison to
simple data exchange interfaces (Schindel,
Lewis, Sherey, Sanyal 2015). These systems
and their users are enabled to represent and
understand systems in S*Space.

Further Evidence of the Need
Why is such a transition in thought and

practice important? An ancient navigator
would not have been in a position to artic-
ulate the need for a map in the same terms
we would use today, so today’s systems nav-
igators may face the same kind of barriers
to visions of the future.

Further evidence is here offered in three
areas:

1. System interactions: One reference is
the history of improvement of human
life during the last three hundred
years, driven by the fruits of science
and engineering as they explicated
and harvested deeper understanding
of nature. A prime connection
of systems and that history is the
central role of physical interactions
as the basis of all scientific laws in
the physical sciences, discovered,
expressed, and exploited over those
three centuries to improve human life.
We assert that physical interactions
between parts are likewise the
foundational perspective of the
science and engineering of systems.
Interactions accordingly play a central
part in the S*Metamodel (Schindel
2013a). However, these interactions
are not necessarily recognized in the
same way by contemporary system
modeling languages and tools or are
in other cases merely tolerated by

them.
2. System failures: Human engineered

systems have purpose, at the risk of
failure in that purpose. Analysis of
failure modes and effects (FMEA,
FMECA, etc.) and other forms of
risk analysis are central to systems
engineering and are likewise funda-
mental to the S*Space described by
the S*Metamodel (Schindel 2010).
Purpose is not an add-on, and neither
is failure in that purpose.

3. System requirements: Systems
engineers know that requirements
are important, but they are most
frequently conceived as the prose
statements used to represent them to
humans. Efforts by the suppliers of
engineering tools and databases have
brought forth databases and later
models that incorporate and link to
and among these textual structures.
However, these text representations
are the “prose equations” of the
non-linear extension of transfer
functions (Schindel 2005), even if
not recognized as such. Imagine an
engineering world in which math-
ematical equations were viewed as
being primarily the strings of text
that represent them. Accordingly, the
related transfer function abstraction
is fundamental to the S*Metamodel’s
integration of requirements.

Information vs. Process: Re-Integrating
Systems Engineering Maps and Itineraries

Once a stronger semantic model of
system space is in hand, its re-integration
with systems processes and procedures
is possible. We have found this has good
positive impact on the traditional pro-
cedures with which we re-integrate that
systems space, making those processes and
procedures more effective while respecting
their historical roots and values.

Stakeholder Feature

State

Input/
Output

System

System of
AccessInterface

Functional
Role

Design
Component

Functional
Interaction

(Interaction)

Technical
Requirement

Statement

Design
Constraint
Statement

attribute

Stakeholder
Requirement

Statement
attribute attribute

attribute

attributeattribute

WB

WB
BB

BB

“A” Matrix
Couplings

“B” Matrix
Couplings

(logical system)

(physical system)

Stakeholder
World

Language

Technical
World

Language

High Level
Requirements

Detail Level
Requirements

High Level
Design

What Is the Smallest Model of a System?
William D. Schindel

ICTT System Sciences
schindel@ictt.com

Copyright © 2011 by William D. Schindel. Published and used by INCOSE with permission.

Abstract. How we represent systems is fundamental to the history of mathematics, science
and engineering. Model-based engineering methods shift the nature of representation of
systems from historical prose forms to explicit data structures more directly compatable
to those of science and mathematics. However, using models does not guarantee simpler
representation—indeed a typical fear voiced about models is that they may be too complex.

Minimality of system representations is of both theoretical and practical interest. The
mathematical and scientific innterest is that the size of a system’s “minimal representation”
is one definition of its complexity. The practical engineering interest is that the size
and redundancy of engineering specifications challenge the effectiveness of systems
engineering processes. INCOSE thought leaders have asked how systems work can be
made 10:1 simpler to attract a 10:1 larger global community of practitioners. And so, we
ask: What is the smallest model of a system?

Figure 8. What Is the smallest model of a system?

Stakeholder Feature

State

Input/
Output

System

System of
AccessInterface

Functional
Role

Design
Component

Functional
Interaction

(Interaction)

Technical
Requirement

Statement

Design
Constraint
Statement

attribute

Stakeholder
Requirement

Statement
attribute attribute

attribute

attributeattribute

WB

WB
BB

BB

“A” Matrix
Couplings

“B” Matrix
Couplings

(logical system)

(physical system)

Stakeholder
World

Language

Technical
World

Language

High Level
Requirements

Detail Level
Requirements

High Level
Design

Design: Second (and Lower) Level System(s)

Stakeholder
Requirements
Definition

Requirements
Validation

Requirements
Analysis

Architectural
Design

Verification
(by Analysis &

Simulation)

Information Passing Through Processes Above

(S*Metamodel Summary)

Design: Top-Level System

Design: Second (and Lower) Level
System(s)

Realization: Second (and Lower) Level
System(s)

Realization: Top Level System

Component Level Design,
Acquisition, Fabrication

Organizational Project–
Enabling Processes

Agreement Processes

Technical Processes

Project Processes
Project

Planning

Life Cycle Model
Management

Human Resource
Management

Quality
Management

Acquisition

Supply

Infrastructure
Management

Project Portfolio
Management

Decision
Management

Information
Management

Risk
Management

Requirements
Analysis

Requirements
Validation

Verification
(by Test)

Simulation
Validation

Integration

Verification
(by Test)

Simulation
Validation

Integration

Disposal

Transition

MaintenanceOperation

Stakeholder
Requirements

Definition

Architectural
Design

Verification
(by Analysis &

Simulation

Requirements
Analysis

Requirements
Validation

Stakeholder
Requirements

Definition

Architectural
Design

Verification
(by Analysis &
Simulation)

Configuration
Management Measurement

Implementation

Project Assessment
and Control

Architecture View of ISO 15288 Life Cycle Management SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

14

Figure 9. Process versus information

For example, we have created formal
models of the ISO15288 processes,
integrating with that well-known framework
while giving new insight and power to
its implementation. Figure 9 summarizes
the notion that this paper began with: the
systems engineering process (summarized
at the top of Figure 9 by ISO 15288 process
areas) consumes and produces information.
By using a stronger semantic model of that
information (S*Metamodel summarized at
the bottom of Figure 9), we strengthened
each of the systems engineering processes
that consume and produce that information.

A part of that strengthening was to
introduce into those systems engineering
process models not only the option for
MBSE models of target systems and their
views, but the further notion that these
models can be constructed from mod-
el-based S*Patterns. This is discussed in the
next section.

Trajectories, Persistent Memories Patterns:
Roads Already Travelled

System configuration trajectories (Figure
9 lower right) are not just important during
development of a single system generation.
Across the life cycles of multiple systems,
we have the splitting evolution of systems
that emerge as responses to their environ-
ments. What is the configuration space

for these evolving systems across multiple
family life cycles (Figure 10)?

The same underlying S*Metamodel,
along with the “System of Innovation
Pattern” (Beihoff and Schindel 2012
and Schindel 2013b) supports all these,
including more specialized system family,
product line, or architectural patterns and
frameworks (Fig. 11). In addition to our
own firm’s work in pattern-based systems
engineering (PBSE) over several decades,
PBSE based on these S*Patterns is also be-
ing pursued and practiced by the Patterns
Challenge Team of the INCOSE/OMG
MBSE initiative (INCOSE Patterns Team
2014), and the subject of several related
IS2015 papers (Cook and Schindel 2014;
Nolan, Pickard, Russell, and Schindel 2015;
Peterson and Schindel 2015; Schindel,
Lewis, Sherey, and Sanyal 2015).

When persistent memory of configurable

re-usable S*Models are pursued as S*Pat-
terns, where we have integrated it into the
ISO 15288 process model, emerging themes
include:

1. Centrality of patterns to science
and engineering: Although discov-
ery of patterns may be argued to sit
at the heart of the physical sciences,
in PBSE they likewise become the
heart of engineering and innovation.
Indeed, we argue in Beihoff and
Schindel (2012) that “accumulation of
experience” is a key constituent of the
system of innovation, and formal-
izing it in patterns implements this.
Patterns, as the basis for engineered
platforms and product lines, become
the equivalent of theoretical frame-
works and paradigms in science.

2. Intellectual assets: After several
decades of investment in computer
software, the Financial Accounting
Standards Board (FASB) formally
recognized accounting for that
investment on a capitalized asset
basis, joining “bricks and mortar” as a
financial asset. Since that time, annual
U.S. investment in intangible assets
has grown to exceed investment in
tangibles. The model-based economy
is arriving. S*Patterns satisfy the
criteria of being a form of software,
eligible for that capitalization of
investment in systems IP (Schindel
2007 and Sherey 2006)

3. Process patterns: The systems
engineering process, or the larger
innovation process, are themselves

Figure 10. Evolving systems, over multiple life cycles

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

15

systems, and may be modeled as
such (Beihoff and Schindel 2012;
Schindel 2013b; Schindel, Ahmed,
Hanson, Peffers, Kline 2011).
Accordingly, there are also S*Pattern
representations for these systems, as
we have created for ISO 15288.

Beginning at the INCOSE IW2015
MBSE workshop, we will examine the agile
systems representation in this model-based
framework (Dove and Schindel 2015).

CONCLUSIONS, IMPLICATIONS AND FUTURE
WORK

1. We assert, and have offered argument
and evidence above, that the MBSE
model-centric vision expressed by
INCOSE Vision 2025 will require
progress in shared understanding

Stakeholder Feature

State

Input/
Output

System

System of
AccessInterface

Functional
Role

Design
Component

Functional
Interaction

(Interaction)

Technical
Requirement

Statement

Design
Constraint
Statement

attribute

Stakeholder
Requirement

Statement
attribute attribute

attribute

attributeattribute

WB

WB
BB

BB

“A” Matrix
Couplings

“B” Matrix
Couplings

(logical system)

(physical system)

Stakeholder
World

Language

Technical
World

Language

High Level
Requirements

Detail Level
Requirements

High Level
Design

Stakeholder Feature

State

Input/
Output

System

System of
AccessInterface

Functional
Role

Design
Component

Functional
Interaction

(Interaction)

Technical
Requirement

Statement

Design
Constraint
Statement

attribute

Stakeholder
Requirement

Statement
attribute attribute

attribute

attributeattribute

WB

WB
BB

BB

“A” Matrix
Couplings

“B” Matrix
Couplings

(logical system)

(physical system)

Stakeholder
World

Language

Technical
World

Language

High Level
Requirements

Detail Level
Requirements

High Level
Design

Stakeholder Feature

State

Input/
Output

System

System of
AccessInterface

Functional
Role

Design
Component

Functional
Interaction

(Interaction)

Technical
Requirement

Statement

Design
Constraint
Statement

attribute

Stakeholder
Requirement

Statement
attribute attribute

attribute

attributeattribute

WB

WB
BB

BB

“A” Matrix
Couplings

“B” Matrix
Couplings

(logical system)

(physical system)

Stakeholder
World

Language

Technical
World

Language

High Level
Requirements

Detail Level
Requirements

High Level
Design

Improve
Pattern

Patterns General
System
Pattern

Develops and Maintains
Core PatternsDevelops and Maintains

Individual Family Patterns

Configures and Specializes
Models from Patterns

Product Lines or
System Families

Individual Product
or System Configurations

Le
ar

ni
ng

s

Configure,
Specialize

Pattern

Metamodel for
Model-Based Systems
Engineering (MBSE)

Pattern Hierarchy for
Pattern-Based Systems

Engineering (PBSE)
Pattern-Based Systems

Engineering (PBSE)
Processes

Pattern Configuration
Process

(Projects,
Applications)

Pattern Management
Process

Figure 11: Evolving families of systems, pattern-based systems engineering (PBSE)

of the underlying semantic model
of system space, and that this will
be needed independent of specific
modelling language/modelling view
semantics, even when they are them-
selves standards-based. Indeed, these
languages and systems can them-
selves build upon and gain from such
a shared underlying semantic model.

2. Current procedure-based systems
engineering and innovation process-
es can be made more effective by
increasing the focus on underlying
information vs. procedure, without
abandoning the value of procedural
foundations, and with these impacts:

• Knowing “where you are, not just
what you are doing”

• Simplification, while speeding and
improving outcomes

• Improved ability to understand,
think critically about, represent, and
communicate

• “the current situations” in projects,
coupled with more effective risk
management (Schindel 2011c)

• Increased agility of the overall
System of Innovation (Dove and
LaBarge 2014)

• Availability of an MBSE model of
ISO 15288, incorporating PBSE
options

• Improved capabilities for even the
currently available generation of
automated aids, modelling tools, and
PLM systems

• Realizing more of INCOSE Vision
2025.

REFERENCES
 ■ Barkowsky, Thomas 2002. Mental Representation and

Processing of Geographic Knowledge. Berlin, DE: Springer.
 ■ Berg, E. 2014. “Affordable Systems Engineering: An Applica-

tion of Model-Based System Patterns to Consumer Packaged
Goods Products, Manufacturing, and Distribution.” Presented
at the Annual International Workshop of INCOSE (MBSE
Workshop), Los Angeles, US-CA, 25-28 January.

 ■ Beihoff, B., and W. Schindel. 2012. “Systems of Innovation I:
Models of Their Health and Pathologies.” Paper presented at
the 22nd Annual International Symposium of INCOSE, Rome,
IT, 9-12 July.

 ■ Bradley, J., M. Hughes, and W. Schindel, 2010. “Optimizing
Delivery of Global Pharmaceutical Packaging Solutions, Using
Systems Engineering Patterns.” Paper presented at the 20th
Annual International Symposium of INCOSE, Chicago, US-IL,
12-15 July.

 ■ Casagrande-Kim, Roberta, et al. n.d. NYU ISAW web site
and bibliography on ancient cartography: http://isaw.nyu.edu/
exhibitions/space/bibliography.html.

 ■ Cook, D., and W. Schindel. 2015. “Utilizing MBSE Patterns to
Accelerate System Verification.” Paper presented at the 25th
Annual International Symposium of INCOSE, Seattle, US-WA,
13-16 July.

 ■ Dove, R., and R. LaBarge. 2014. “Fundamentals of Agile
Systems Engineering—Part 1” and “Part 2.” Papers presented

at the 24th Annual International Symposium of INCOSE, Las
Vegas, US-NV, 30 June – 3 July.

 ■ Dove, R., and W. Schindel. 2015. “Agile Modeling and Mod-
eling Agile Systems.” Presented at the Annual International
Workshop of INCOSE, Los Angeles, US-CA, 24-27 January.

 ■ Estafan, J. 2008. “Survey of Model-Based Systems Engineering
(MBSE) Methodologies.” INCOSE MBSE Initiative.

 ■ ICTT. 2009. “Systematica Metamodel” Version 7.1.
Methodology Release 4.0. ICTT System Sciences, 29 May.

 ■ ICTT. 2013. “Abbreviated Systematica 4.0 Glossary” P3125 Ver.
4.2.2. ICTT System Sciences.

 ■ Moerdijk, Ieke. 2012. “Descartes and the Geometrization of
Algebra.” Descartes-Huygens Lecture, Radboud University,
Nijmegen, NL, 3 April.

 ■ INCOSE Handbook. 2015. Systems Engineering Handbook: A
Guide for System Life Cycle Processes and Activities Version
4. Edited by D. Walden, G. J. Roedler, K. J. Forsberg, R. D.
Hamelin, and T. M. Shortell. International Council on Systems
Engineering, San Diego, US-CA: Wiley.

 ■ INCOSE Vision 2025. 2014. “A World in Motion: Systems
Engineering Vision 2025.” International Council on Systems
Engineering, San Diego, US-CA.

 ■ INCOSE Patterns Team. 2014. INCOSE/OMG MBSE Initiative:
Patterns Challenge Team 2013-2014. http://www.omgwiki.org/
MBSE/doku.php?id=mbse:patterns:patterns.

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

16

 ■ ISO 15288. 2015. ISO/IEC/IEEE 15288. Systems Engineering—
System Life Cycle Processes. International Organization for
Standardization, Geneva, CH: ISO.

 ■ ISO 26550. 2013. ISO/IEC 26550. Systems and Software
Engineering—Reference Model for Product Line Engineering
and Management. International Organization for
Standardization, Geneva, CH: ISO.

 ■ ISO 42010. 2011. ISO/IEC/IEEE 42010. Systems and Software
Engineering—Architecture Description. International
Organization for Standardization, Geneva, CH: ISO.

 ■ Long, David 2014a. “Model-Based Systems Engineering at the
Age of Eight.” Presented at NDIA GVSETS Conference, Troy,
US-MI, August.

 ■ Long, David, 2014b. Keynote Address to INCOSE Great Lakes
Regional Conference on Systems Engineering, Schaumburg,
US-IL, 10 October.

 ■ Kaylan, Melik. 2013. “A World Without Maps.” The Wall Street
Journal 10.29-30.2013.

 ■ Mercator. 2014. “The Mercator Projection.” Wikipedia: http://
en.wikipedia.org/wiki/Mercator_projection.

 ■ Nolan, A., A. Pickard, J. Russell, and W. Schindel. 2015. “When
Two is Good Company, but More is Not a Crowd.” Paper to
be presented at the 25th Annual International Symposium of
INCOSE, Seattle, US-WA, 13-16 July.

 ■ OMG. 2012. “OMG Systems Modeling Language” Version 1.3.
Object Management Group, June.

 ■ Peterson, T., and W. Schindel. 2015. “Autonomous Ground
Vehicle Platforms and Model-Based System Patterns: An
Example.” Paper presented at the 25th Annual International
Symposium of INCOSE, Seattle, US-WA, 13-16 July.

 ■ Schindel, W. 2005a. “Pattern-Based Systems Engineering: An
Extension of Model-Based SE.” Tutorial presented at the 15th
Annual International Symposium of INCOSE, Rochester US-
NY, 13-16 July.

 ■ Schindel, W. 2005b. “Requirements Statements are Transfer
Functions: An Insight from Model-Based Systems Engi-
neering.” Paper presented at the 15th Annual International
Symposium of INCOSE, Rochester US-NY, 13-16 July.

 ■ Schindel, W. 2007. “Are Patterns Software?” ICTT System
Sciences, January.

 ■ Schindel, W. 2010. “Failure Analysis: Insights from Model-
Based Systems Engineering.” Paper presented at the 20th
Annual International Symposium of INCOSE, Chicago, US-IL,
12-15 July.

 ■ Schindel, W. 2011b. “What Is the Smallest Model of a System?”
Paper presented at the 21st Annual International Symposium
of INCOSE, Denver, US-CO, 20-23 June.

 ■ Schindel, W. 2011c. “The Impact of ‘Dark Patterns’ on
Uncertainty: Enhancing Adaptability In The Systems
World.” Presented at the INCOSE Great Lakes 2011 Regional
Conference on Systems Engineering, Dearborn, US-MI.

 ■ Schindel, W. 2012a. “Introduction to Pattern-Based Systems
Engineering (PBSE).” Presented at the INCOSE Finger Lakes
Chapter Webinar, 26 April.

 ■ Schindel, W. 2012b. “Integrating Materials, Process, & Product
Portfolios: Lessons from Pattern-Based Systems Engineering.”
in Proc. of Society for Advancement of Materials and Process
Engineering (SAMPE).

 ■ Schindel, W. 2013a. “Interactions: At the Heart of Systems.”
Presented at the INCOSE Great Lakes Regional Conference on
Systems Engineering, West Lafayette, US-IN, October.

 ■ Schindel, W. 2013b. “Systems of Innovation II: The Emergence
of Purpose.” Paper presented at the 23rd Annual International
Symposium of INCOSE, Philadelphia, US-PA, 24-27 June.

 ■ Schindel, W. 2014. “The Difference Between Whole-System
Patterns and Component Patterns: Managing Platforms and
Domain Systems Using PBSE.” Presented at the INCOSE Great
Lakes Regional Conference on Systems Engineering, Schaum-
burg, US-IL, October.

 ■ Schindel, W. 2015. “System Life Cycle Trajectories: Tracking
Innovation Paths Using System DNA.” Paper presented at the
25th Annual International Symposium of INCOSE, Seattle,
US-WA, 13-16 July.

 ■ Schindel, W., S. Lewis, J. Sherey, and S. Sanyal. 2015. “Accel-
erating MBSE Impacts Across the Enterprise: Model-Based
S*Patterns.” Paper presented at the 25th Annual International
Symposium of INCOSE, Seattle, US-WA, 13-16 July.

 ■ Schindel, W., S. Peffers, J. Hanson, J. Ahmed, and W. Kline.
2011. “All Innovation is Innovation of Systems: An Integrated
3-D Model of Innovation Competencies.” Proc. of ASEE 2011
Conference, American Association for Engineering Education.

 ■ Schindel, W., and T. Peterson. 2013. “Introduction to Pattern-
Based Systems Engineering (PBSE): Leveraging MBSE
Techniques.” Tutorial at the 23rd Annual International
Symposium of INCOSE, Philadelphia, US-PA, 24-27 June.

 ■ Schindel, W., and V. Smith 2002. “Results of applying a
families-of-systems approach to systems engineering of
product line families.” SAE International, Technical Report
2002-01-3086.

 ■ Sherey, J. 2006. “Capitalizing on Systems Engineering.” Paper
presented at the 16th Annual International Symposium of
INCOSE, Orlando, US-FL, 9-13 July.

 ■ Simmons, George F. 1963. Introduction to Topology and
Modern Analysis, Chapter 10: Hilbert Spaces. McGraw-Hill.

 ■ U’Ren, J. 2003. “An Overview of AP233: STEP’s Systems
Engineering Standard.”, ISO 10303 AP233 Working Group, 20
October.

ABOUT THE AUTHOR
[Editor: Author biography was current when the paper was
published in 2015.]

Bill Schindel is president of ICTT System Sciences (www.ictt.
com), a systems engineering company. His 40-year engineering
career began in mil/aero systems with IBM Federal Systems,
Owego, NY, included service as a faculty member of Rose-Hulman
Institute of Technology, and founding of three commercial
systems-based enterprises. He has led and consulted on
improvement of engineering processes within automotive, medical/
health care, manufacturing, telecommunications, aerospace, and
consumer products businesses. Bill has led the development and
practice of Systematica™ methodology for pattern-based systems
engineering. He earned the BS and MS in mathematics. At the
2005 INCOSE International Symposium, he was recognized as
the author of the outstanding paper on modeling and tools, co-led
a 2013 research project on the science of systems of innovation
within the INCOSE System Science Working Group, and currently
co-leads the patterns challenge team of the OMG/INCOSE MBSE
initiative. Bill is an INCOSE CSEP, and president of the Crossroads
of America INCOSE chapter.

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

17

INTRODUCTION

 ABSTRACT
Engineering disciplines (civil, mechanical, chemical, electrical) sometimes argue their fields have “real physical phenomena”,
“hard science” based laws, and first principles, claiming systems engineering lacks equivalent phenomenological foundation. We
argue the opposite, and how replanting systems engineering in model-based systems engineering (MBSE) / pattern-based systems
engineering (PBSE) supports emergence of new hard sciences and phenomena-based domain disciplines.
 Supporting this perspective is the system phenomenon, wellspring of engineering opportunities and challenges. Governed
by Hamilton’s principle, it is a traditional path for derivation of equations of motion or physical laws of so-called “fundamental”
physical phenomena of mechanics, electromagnetics, chemistry, and thermodynamics.
 We argue that laws and phenomena of traditional disciplines are less fundamental than the system phenomenon from which
they spring. This is a practical reminder of emerging higher disciplines, with phenomena, first principles, and physical laws.
Contemporary examples include ground vehicles, aircraft, marine vessels, and biochemical networks; ahead are health care,
distribution networks, market systems, ecologies, and the IoT.

Bill Schindel. schindel@ictt.com
Copyright © 2015 by Bill Schindel. Published and used by INCOSE with permission.

[Editor: This paper for systems engineering foundations refers to the Systems Engineering Vision 2025 (Copyright 2014 by the
International Council on Systems Engineering).]

Got Phenomena?
Science-Based
Disciplines for Emerging
Systems Challenges

As a formal body of knowledge
and practice, systems engineer-
ing is much younger than the
more established engineering

disciplines, such as civil, mechanical, chem-
ical, and electrical engineering. Comparing
their underlying scientific foundations to
some equivalent in systems engineering
sometimes arises as a dispute, concerning
whose profession is “real” engineering
based on (or at least later explained by)
hard science, with tangible physical phe-
nomena, and accompanied by physical laws
and first principles. This paper argues for a
different perspective altogether (Figure 1),
and the reader exploring this paper is
warned to avoid the trap of the seemingly

familiar in parsing the message.
Beyond that argument, this paper

addresses a more pragmatic goal — the
means of identifying and representing the
tangible physical phenomena that emerge

in new system domains, along with their
respective physical laws and first princi-
ples. This is of more than philosophical
or professional significance. Challenged
by numerous issues in emerging systems,
society has an interest in organizing
successful approaches to the scientific
understanding of laws and first principles
about, and engineering harnessing of, the
related phenomena. Individuals entering
or navigating the technical professions
likewise have personal interests in this
evolving roadmap.

While recognizing the formidable works
of systems theorists in these still early
days of systems engineering (Ashby 1956,
Bertalanffy 1969, Braha et al. 2006, Cowan

Figure 1. En garde! Not what you may be
expecting

Systems Engineering

Traditional Engineering
Disciplines

Emerging Engineering
Disciplines

Traditional Engineering
Disciplines

Systems Engineering
Disciplines

(b) The perspective argued
 by this paper

Traditional Physical Phenomena The System Phenomenon

(a) Not the perspective of
this paper, but a common view

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

18

et al. 1994, Holland 1998, Prigogine 1980,
Warfield 2006, Wymore 1993), this paper
focuses on even earlier contributions of
science and mathematics to the flowering
of engineering’s impact over the last three
centuries. We will extract the “system phe-
nomenon” at the center of that foundation
and consider its impacts and implications
for systems engineering practice. This
perspective helps us understand the phase
change that systems engineering is going
through, as model-based representations
enable the framework that has already had
profound impact in the traditional science/
engineering paired disciplines.

Section 2 of this paper reminds us of the
“phase change” that occurred in science,
technology, engineering, and mathematics
(STEM) approximately 300 years earlier,
when means of representation advanced,
and argues efficacy from the pragmatic
perspective of the dramatic impacts on
human life. Section 3 argues that we are
now in the early days (when trends can still
be confusing) of a similar phase change
in the STEM of general systems. Section 4
provides the main argument, introduces
the system phenomenon, and asserts that
it is not only the hard physical phenomena
basis for systems engineering, but surpris-
ingly also for all the traditional disciplines’
phenomena, reversing the “who’s got real
phenomena?” argument. This section also
suggests the means of identifying and rep-
resenting the tangible physical phenomena
emergent at all levels, and their respective
physical laws and first principles. Section 5
returns to the subject of current trends in
systems engineering, the need to strengthen
its foundation, and the opportunity to use
model representation of the system phe-
nomenon to that end. Section 6 concludes
with implications for action.

PHASE CHANGE EVIDENCE: EFFICACY OF
HARD SCIENCE, PHENOMENA-BASED, STEM
DISCIPLINES
Science, Technology, Engineering, and
Mathematics —300 Years of Impact

Our pragmatic argument is based
on assessing the impact of the physical
sciences and mathematics on engineering
by their joint efficacy in improving the
human condition. In a matter of 300 years
(from around Newton), the accelerating
emergence of STEM has lifted the possi-
bility, quality, and length of life for a large
portion of humanity, while dramatically
increasing human future potential (Mokyr
2009, Morris 2012, Rogers 2003). Among
the measures of this impact are Figures 2, 3,
and 4. By the close of the twentieth century,
the learning and impacts of STEM along
with other factors (for example, market
capitalism as a driver of prosperity, as in

U.S. Life Expectancy a Time of Birth DEATHS PER 100,000 INFANTS,
1900–2007

U.
S.

 Li
fe

 E
xp

ec
ta

nc
y

(y
rs

)

1895

80

75

70

65

60

55

50

45

40

35
 1915 1935 1955

Year

Source: National Vital Statistics Reports
Volume 58, Number 21 June 28, 2010 Sources: http://hsus.cambridge.org/HSUSWeb/toc/hsusHome.do;

http://wonder.cdc.gov/

 1975 1995 2015

1900

18,000

16,000

14,000

12,000

10,000

8,000

6,000

4,000

2,000

0
1920 1940 1960 1980 2000

Figure 2. The length of human life has been dramatically extended

Food Expenditures
Share of Disposable Personal Income

1929–2009

GDP per Capita of the US
1870 to 2011

Pe
r C

ap
ita

 G
DP

 in
 2

00
5

co
ns

ta
nt

 $

28

24

20

16

12

8

Percent

Source: USDA

1930 1940 1950 1960 1970 1980 1990 2000 2010

9.47%

45,000

40,000

35,000

30,000

25,000

20,000

15,000

10,000

5000

0

Source: Maddison for 1870 to 2006

Extended with BEA data for 2007–2011

Expressed in 2005 constant $ prices

1870 1880 1900 1920 1940 1960 1980 2000 2011

Figure 3. Simply feeding ourselves consumes less labor and time

Motor Vehicle Related Traffic Fatalities
(1899–1962)

Global Fossil Carbon Emissions

M
ill

io
n

M
et

ric
 To

ns
 o

f C
ar

bo
n/

Ye
ar

Fatalities

Fatalities Predicted

1890

1800 1850 1900 1950 2000

2000

3000

4000

5000

6000

7000

1000

45000

40000

35000

30000

25000

20000

15000

10000

5000

0
1900 1910 1920 1930 1940 1950 1960 1970

Year

Fa
ta

lit
ie

s Cement Production

Total

Natural Gas
Cement Production

Coal
Petroleum

NHTSA and FHWA data
In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center,
Oak Ridge National Laboratory, United States Department of Energy, Oak Ridge, Tenn., USA

Figure 5. More available energy and mobility have brought unintended consequences

Figure 4. The range of individual human travel has vastly extended

100

10

1

0.1

0.01
1880 1980 1920 1940Year

Trains

Air

Cars (+Buses + Motorcycles)

Horses

Walking

Total (average per decade)
Regression Line (2.7% per year)

Ki
lo

m
et

er
s (

lo
g

sc
al

e)

1960 1980 2000

US passenger travel per capita per
day by all modes. Sources of data:
Grubler, US Bureau of the Census,
US Department of Transportation

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

19

Friedman (1980)) were increasingly recog-
nized as critical to individual and collective
human prosperity.

During that same period, the human-
populated world has become vastly
more interconnected, complex, and
challenging. New opportunities and
threats have emerged, in part out of less
positive impacts of human applications
of STEM. Understanding and harnessing
the possibilities have become even more
important than before, from the smallest
known constituents of matter and life, to
the largest scale complexities of networks,
economies, the natural environment, and
living systems. Figure 5 illustrates other
parameters of these impacts.

Because we argue here from the effi-
cacy shift as STEM advanced, one might
question how much other causes (for
example, market capitalism as noted above)
accounted for these advances. To remem-
ber that these shifts were more than just
correlations in time, Table 1 reminds us of
some of the more familiar and yet dramatic
STEM-based advances associated with the
above impacts:

“Phase Changes”: Emergence of Science
and Engineering as Phenomena-Based
Disciplines

Over those three centuries, the “hard
sciences”, along with the engineering
disciplines and technologies based on those
sciences, are credited with much of this
amazing societal progress, as well as some
related challenges (Mokyr 2009, Morris
2012, Rogers 2003). Our point here is the
enormous impact of these “traditional” (at
least, over 300 short years) disciplines, as
their foundations emerged in understand-
ing of physical phenomena and related
predictive and explanatory models.

How can the foundational roots of
systems engineering be compared to
engineering disciplines already seen as
based on the “hard sciences?” As illustrated
in Table 2, the traditional engineering
disciplines have their technical bases and
quantitative foundations in what emerged
as physical sciences about what came to be
understood as physical phenomena.

It wasn’t always this way, as seen from the
shift that began to occur just three centuries
ago. It is informative to remember the
“phase changes” that occurred in what are
now considered the traditional disciplines,
by recalling the history of physics before
Newton, chemistry before Lavoisier &
Mendeleev, and electrical science before
Faraday, Hertz, and Maxwell, versus what
followed for each (Cardwell 1971, Forbes
et al. 2014, Pauling 1960, Servos 1996,
Westfall 1980). All of these domains had
earlier, less effective, bodies of thought,

generated by those attempting to answer
questions and, in some cases, provide
practical benefits. Instead of dismissing
alchemy, astrology, pre-Copernican
cosmology, and their counterparts,
we can instead see them as grappling
with phenomena without the benefit of
sufficiently powerful mathematics and the
verification mechanisms of experiment and
refutation to test against reality what we
would now call models.

SYSTEMS ENGINEERING IS STILL YOUNG
Contemporary specialists in individual

engineering disciplines (for example,
civil, mechanical, chemical, electrical)
sometimes argue that their fields are based
on “real physical phenomena”, founded on
physical laws based in the “hard sciences”
and first principles. One sometimes hears
claims that systems engineering lacks the
equivalent phenomena-based theoretical
foundations. In that telling, systems
engineering is instead critically portrayed
as emphasizing (1) process and procedure,
(2) critical and systems thinking and good
writing skills, and (3) organizing and
accounting for information and risk in
particular ways —valuable, but not as based
on an underlying “hard science”.

That view is perhaps understandable,
given the initial trajectory of the first 50
years of systems engineering (Adcock
2015, Checkland 1981, Walden et al. 2015,
Wymore 1977). “Science” or “phenomenon”
of generalized systems have for the most
part been described on an intuitive or
qualitative basis, with limited reference
to a “physical phenomenon” that might
be called the basis of systems science
and systems engineering. Some systemic
phenomena (for example, requisite variety,
emergence of structure, complexity, chaos
theory, etc.) have received attention, but it
is challenging to argue that these insights
have had as great an impact (yet) on the
human condition and engineering practice
as the broader STEM illustrations cited
above for the most recent three centuries
of physical sciences and mathematics.
However, INCOSE’s own stated vision
(Beihoff et al. 2014) calls upon systems
engineering for such a result.

Respectful of the contributions of those
early thinkers in systems engineering, we
also note that their contributions can in
some cases be expressed as manifesta-
tions of the modeled system phenomenon
described below, advancing the scientific
foundations of systems engineering.

Table 1. STEM drivers that contributed to the above impacts

Impact Notable STEM Drivers (sample only)

Increased life expectancy
Life sciences, nutritional science

Reduced infant mortality

Reduced cost of food
production

Agronomy, herbicides, fertilizers,
mechanization

Increased GDP per capita Mechanized production, mechanized
distribution

Increased range of travel Vehicular, civil, and aerospace engineering

Increased traffic fatalities Vehicular engineering, civil engineering

Increased carbon emissions Vehicular engineering; mechanized
production

Table 2. Phenomenon-based disciplines

Engineering
Discipline Phenomena Scientific

Foundations
Representative
Scientific Laws

Mechanical
Engineering

Mechanical
Phenomena

Physics, Mechanics,
Mathematics, . . .

Newton’s Laws,
others

Chemical
Engineering

Chemical
Phenomena

Chemistry,
Mathematics, . . .

Periodic Table,
others

Electrical
Engineering

Electromagnetic
Phenomena

Electromagnetic
Theory

Maxwell’s
Equations, others

Civil
Engineering

Structural
Phenomena

Materials Science,
. . .

Hooke’s Law,
others

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

20

MBSE, PBSE: Enabling a Phase Change in
Systems Engineering

In the case of systems engineering, a
key part of the story is that the role that
quantitative system models have played, or
not played, during its initial history. Most
recently, the broader INCOSE-encouraged
role for model-based methods offers to
eventually accelerate the “phase change”
that the successful earlier history of science,
mathematics, and other engineering disci-
plines suggest is now in progress.

Models are certainly not new to seg-
ments of engineering practice. However, we
are representing an increasingly fraction
of our overall understanding of systems,
from stakeholder trade space, to required
functionality and performance, to design,
and to risk, using explicit and increasingly
integrated system models. As in Newton’s
Day, this also puts pressure on the ap-
proaches to model representations, in order
that they effectively represent, conveying
enough, and not too much, about the key
ideas concerning the real things they are
intended to describe.

The progress of physical sciences did
not arise from models that only could
describe single unique instances of systems,
but instead represented what came to be
understood as more general patterns that
recur across broad families of systems.
Likewise, there is an increasing effort in
systems engineering to recognize that these
models must often describe patterns of
similarity and variation. This recognition of
recurring patterns is necessary both from
the perspectives of science and economics.
The increasing use of explicit model-based
patterns in these representations is a part
of this phase change (INCOSE Patterns
WG 2015, INCOSE MBSE Initiative 2015).
Pattern-based systems engineering (PBSE)
as an extension of model-based systems
engineering (MBSE) increases emphasis on
representation.

This is a more significant change than
just the emergence of standards for systems
modeling languages and information tech-
nology (IT) toolsets, even though those are
valuable steps. We need underlying model
structures that are strong enough — re-
member physics before the calculus of
Newton and Leibniz. As a test of “strong
enough,” we suggest the ability to have the
kinds of impact on humankind summa-
rized in Section 2 — beginning with clearer
focus on what phenomena were being
represented.

Although this challenge sounds sobering,
we will next argue that it is not necessary
for emerging systems models to “start from
scratch” in their search for new system phe-
nomena, and further argue that what is al-
ready known from the earlier phase change

of Section 2 helps suggest what aspects of
our systems models need to be strength-
ened during the phase change in systems
engineering. PBSE further reminds us of a
practical lesson from the STEM revolution.
Once validated patterns emerge, we (most-
ly) need to learn and apply those patterns
(laws, principles), not how to re-derive
them from earlier knowledge. Examples
include the periodic table and the gas laws.
While it may be controversial, “learn the
model, not modeling” is advice worth
considering, in a time when modeling from
scratch seems carry more excitement.

THE SYSTEM PHENOMENON
The perspective used in this paper defines

a system as a collecting of interacting
components, where interactions involve
the exchange of energy, force, mass, or
information, through which one component
impacts the state of another component,
and in which the state of a component
impacts its behaviour in future interactions
(Schindel 2011).

In this framework, all behaviour is
expressed through physical interactions
(Figure 6). This perspective emphasizes
physical interactions as the context in
which all the laws of the hard sciences are
expressed (Schindel 2013a).

action integral, based on the Lagrang-
ian L of the combined system:

4. The behavioural characteristics of
each interacting component in (1)
above are in turn determined by its
internal (“subsystem”) components,
themselves interacting.

Reduced to simplest forms, the result-
ing equations of motion (or if not known
or solvable, empirically observed paths)
provide “physical laws” (or recurring
observable behaviors) subject to scientific
verification.

Instead of systems engineering lacking
the kind of theoretical foundation that the
“hard sciences” bring to other engineering
disciplines, we therefore assert that:

 ■ It turns out that all those other engi-
neering disciplines’ foundations are
themselves dependent upon the system
phenomenon and emerge from it.

 ■ The related underlying math and
science of systems (dating to at least
Hamilton) provides the theoretical basis
already used by all the hard sciences
and their respective engineering
disciplines.

 ■ It is not systems engineering that lacks
its own foundation—instead, it has
been providing the foundation for the
other disciplines! (Refer to Figure 1.)

Historical Domain Example 1: Chemistry
Chemists, and chemical engineers, justi-

fiably consider their disciplines to be based
on the “hard phenomena” of chemistry
(Pauling 1960, Servos 1996):

 ■ This perspective emerged from the
scientific discovery and verification of
phenomena and laws of chemistry.

 ■ Prominent among these was the
discovery of the individual chemical
elements and their chemical properties,
organized by the discovered patterns of
the periodic table.

 ■ Emerging understanding of related phe-
nomena and behaviours included those
of chemical bonds, chemical reactions,
reaction rates, chemical energy, and
conservation of mass and energy.

 ■ Upon that structure grew further
understanding of chemical compounds
and their properties.

Even though these chemical phenomena
and laws seemed very fundamental:

 ■ All those chemical properties and
behaviors are emergent consequences of
interactions that occur between atoms’
orbiting electrons (or their quantum

S[X] =
B

A
L(X, X, t)dt

External
“Actors”

System

System
Component

Figure 6. The system perspective

The traditional “phenomena” of the
hard sciences are all cases of the following
system phenomenon:

1. Each component has a specific
behaviour during a given interaction
type, determined by the component’s
state. (See (4) below for the source of
that component’s behavioural charac-
teristics.)

2. The combined behaviours of the set
of interacting components deter-
mine a combined system state space
trajectory.

3. That trajectory is a collective property
of the system components and inter-
action, and accordingly is not simply
the description of possible behaviors
of the individual components. For
the systems discussed in this paper,
by Hamilton’s Principle (Levi 2014,
Sussman et al. 2001, Hankins 2004),
the emergent interaction-based
behavior of the larger system is a
“stationary” trajectory X = X(t) of the

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

21

equivalents), along with limited proper-
ties (for example, atomic weights) of the
rest of the atoms they orbit.

 ■ These lower-level interactions give rise
to the visible higher level chemical
behaviour patterns that have their own
higher level properties and relation-
ships, expressed as “hard science” laws
of chemistry.

So, we see that this illustrates:
 ■ The “fundamental phenomena” of
chemistry, along with the scientifically
discovered / verified “fundamental laws
/ first principles” are in fact . . .

 ■ Higher level emergent system patterns
and . . .

 ■ chemistry and chemical engineering
study and apply those system patterns.

Historical Domain Example 2: The Gas
Laws and Fluid Flow

Illustrated by Figure 8, the discovered
and verified laws of gases and of compress-
ible and incompressible fluid flow by Boyle,
Avogadro, Charles, Gay-Lussac, Bernoulli,
and others are rightly viewed as fundamen-
tal to science and engineering disciplines
(Cardwell 1971).

However, all those fluid and gaseous
properties and behaviors are emergent

consequences of interactions that occur
between atoms or molecules, the containers
they occupy, and their external thermal
environment. These lower-level interactions
give rise to patterns that have their own
higher-level properties and relationships,
expressed as “hard sciences” laws. So,
the “fundamental phenomena” of gases,
along with the scientifically discovered
and verified “fundamental laws and first
principles” are in fact higher level emergent
system patterns. And so, mechanical
engineers, thermodynamicists, and
aerospace engineers can study and apply
these system patterns.

Examples from More Recent History
The practical point of this paper is to

emphasize the constant emergence of new
scientific and engineering disciplines, in
domains arising from higher level system
interactions. These include domains that
have been important to society, even
though they arose later than the more
fundamental domains from which they
spring. The discovery and exploitation of
these higher-level phenomena, principles,
and laws is important to future progress
and innovation, including enterprises,
careers of individuals, and society.

These more recent emergent domains, in

which formal system patterns are being rec-
ognized as describing higher-level phenom-
ena and laws, are illustrated by examples of
Figure 9:

1. Ground vehicles: As in the dynamical
laws of vehicle stability that enable
vehicular stability controls (Guiggiani
2014).

2. Aircraft: Including the dynamical
laws at the aircraft level that enable
advanced aircraft design for dynam-
ic performance and top-level flight
controls (Pratt 2000).

3. Marine vessels: Facilitating the
design of more efficient hulls and
special purpose craft, as well as bulk
transports (Perez et al 2007).

4. Biological regulatory networks:
Advancing our understanding of im-
mune reactions and other regulatory
paths in connection with pathologies
as well as therapies (Gene Regulation
Wikipedia).

For example, in the case of ground
vehicles, dynamical laws of vehicle stability
arise from the interactions, modulated
through control algorithms, of the
distributed mass of the vehicle in motion
with the driving surface, transmitted

Figure 7. Chemical interactions, phenomena, principles

Increased fluid speed,
decreased internal pressure.

The often cited example of the
Bernoulli Equation or “Bernoulli
Effect” is the reduction in pressure
which occurs when the fluid speed
increases.

Pressure
Energy

Energy per unit volume before = Energy per unit volume after

Flow velocity Flow velocity

Kinetic
Energy
per unit
volume

Potential
Energy
per unit
volume

V1

P1

A2< A1

v2 > v1

P2

V2

P1P2 <

P1 pv+ +2
1 pgh 1 P2P2 pv+= +2

2 pgh 2

for a fixed mass of gas
at a constant temperature

temperature

volume

T2

T1
T2>T1pr

es
su

re

0 0

(c)
doc b

P

V

Pressure

Volume Gas constant

Number of moles

Temperature

PV=nRT

Force applied

FPistonp

Cylinder

Working fluid

ds

Figure 8. Gas, fluid interactions, phenomena, principles

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

22

through tractional forces of braking, acceleration, or steering,
as further impacted by road surface and tire conditions, along
with other factors. It is the overall system interaction of all these
domain elements that leads to emergent vehicular laws of motion.

Students of complexity (Cowan et al. 1994) will note that
nonlinearity, the onset of chaos, and extreme interdependencies
are not reasons to avoid representing the interactions manifesting
that behaviour. Indeed, they provide further reasons to under-
stand those very interactions.

Future Applications
Examples (Figure 10) that call out for improved future efficacy

in systems engineering include:

1. Utility and other distribution networks: Society has come
to depend on rapidly evolving, often global, networks for
distribution of goods and services, in the form of materials,
energy, communication, and information services. What
are the network-level phenomena, laws, and principles of
these networks, bearing on their effectiveness and resiliency
(Perez-Arriaaga et al. 2013)?

2. Market systems, economies, and human-imposed regulato-
ry frameworks: These systems clearly have direct impact on
society and individuals. The “designed” systems of top-
down regulation imposed upon them include such promi-
nent examples as regulation of banking, securities markets,
development of medical devices and compounds, and
delivery of health care. What are the system-level phenom-
ena, laws, and principles of these systems, bearing on their
effectiveness and resiliency (Friedman 1980)?

3. Living ecologies: The emergent habitats of living things
include rain forests, coral reefs, the human microbiome, and

the biosphere as a whole. These demonstrate characteristics
that include regulatory stability within limits, along with pa-
thologies. What are the system-level phenomena, laws, and
principles of these systems (MacArthur and Wilson 2001).

4. Health care delivery: These systems, including a number of
important challenges, are much in the public eye. The very
definition of effective health care is necessarily dynamic
because of the evolving frontiers of medical science. The
means of effectively delivering care, financing its costs, and

Velocity
b a

θ

Ψ

Dynamics of Road Vehicle

Protein1 Protein2

Protein3

Protein7

TF10 TF11TF9

Gene5

Gene12 Gene10

Gene13

Gene4

Gene1

Protein6

Protein4

cytoplasm

plasma
membrane

nucleus

Protein8

Protein5

Proteins

Protein–protein
interactions
Protein–DNA
interactions
(activation)
Protein–DNA
interactions
(repression)

Genes

Translation

Transcription
factors

Stress

Mα2
Mα1

Lα2

W

waterline

ζ
N

Lα1
AC2

CG

HC

AC1
Dα2

Dα1

T

τ

ξ

ε

Dαh

DF

DHS

Glenn
Research

Center

L=Lift
D=Drag
W=Weight
F=Thrustclimb angle=c

m=aircraft mass
a=acceleration

Equations

Definition of Excess Thrust:

Flight Path

L cos(c) + Fexsin(c) – W = m aVertical

L cos(c) + F sin(c) – D sin(c) – W = m aVertical
F cos(c) – L sin(c) – D cos(c) = m aHorizontal

Fexcos(c) – L sin(c) = m aHorizontal

F – D = Fex

F

Forces in a Climb

L

W
D

Figure 9. Ground and marine vehicles, aircraft, regulation in organisms

Figure 10. Domain systems of future interest

High Level
Requirements

Process Detail Level
Requirements

Process
High Level

Design
Process

High Level
Requirements

Process Detail Level
Requirements

Process

Detail Level
Design
Process

Component
Test Process

Acquisition,
Fabrication

Process

Subsystem
Integration &
Test Process

Subsystem
Integration &
Test Process

System
Demonstration,

Validation

High Level
Design
Process

System

Subsystem

Component

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

23

(Hippocratically) protecting patients from harm are
all subject of study as to system-level phenomena
and principles (Holdren et al. 2014).

5. Product development, general innovation, and
related agility: This system domain is the “home
court” of INCOSE and our systems engineering
profession. While there is a large body of descrip-
tions of the related systems, the study of these sys-
tems as modelled technical systems is mostly new
or in the future. One such project is the INCOSE
agile systems engineering life cycle model project
(Braha et al. 2007, Schindel 2015, Schindel and
Dove 2016, Hoffman 2015).

STRENGTHENING THE FOUNDATIONS OF MBSE
Like mechanics before Newton, the models of MBSE

require a strengthened underlying framework to effec-
tively describe the system phenomenon in the domains
of practice. MBSE requires a strong enough underlying
metamodel to support a phenomenon-based systems
science.

As discussed in Schindel (2013a), interactions play
a central role in that framework, inspired by Hamilton
and three hundred years of pioneers in the emergence of
science and engineering. Interactions are acknowledged
by and can be modelled in some current system mod-
elling frameworks, but typical practice and underlying
structures need related improvement. Figure 11 illustrates
a related, interaction-centric, extract from the S*Meta-
model (Schindel 2011).

An Illustration of Related Systems Engineering Impact: Design Review
As an example of the beneficial impact of this interaction-centric

view of systems engineering, consider design review, where the system
phenomenon appears front and center. Figure 12 is an extract from a
guide to such a review in an MBSE setting (Schindel 2007). This diagram
summarizes six questions relevant to reviewing whether a proposed system
design will satisfy a set of technical requirements. Note Question 2, which
compares the behaviour that emerges from interaction of its “white box”
subsystems to the desired behaviour expressed by the system’s “black box
requirements.”

Stakeholder Feature

State

Input/
Output

System

System of
AccessInterface

Functional
Role

Design
Component

Functional
Interaction

(Interaction)

Technical
Requirement

Statement

Design
Constraint
Statement

attribute

Stakeholder
Requirement

Statement
attribute attribute

attribute

attributeattribute

WB

WB
BB

BB

“A” Matrix
Couplings

“B” Matrix
Couplings

(logical system)

(physical system)

Stakeholder
World

Language

Technical
World

Language

High Level
Requirements

Detail Level
Requirements

High Level
Design

Figure 11. Summary view of S*Metamodel

This is something more than model semantics or
ontology alone. It also means recognizing that the models
we pursue are models of the real physical systems they are
about, and not just models of information about busi-
ness processes concerned with those systems. While that
might seem obvious to the physical scientist, a differ-
ent perspective than that is embedded in forty years of
enterprise information system practice. In that history,
the traditional (and relatively successful) paradigm is
construction of information models that describe infor-
mation transactions or documents (for example, purchase
of air travel tickets). Symptomatic of that paradigm, today
we still encounter MBSE models and human interpreta-
tions of them that include notions of databases, “calls,”
“methods,” and other successful software notions that are
not the same as modelling physical systems. Executable
models add to this challenge. In the midst of this phase
change, we live in interesting times.

1. Understand Validated
Technical Requirements.

2. Is the Decomposition
Technically Correct?

3. Understand Physical
Architecture.

4. Understand Allocation
of Logical Requirements
to Physical Architecture.

5. Are the Components
Capable?

6. Do the Components
introduce any additional
behavior to add to the
Logical Roles?

Output B

Output B

Input A

Input A

Input J

Internal
Input–Output T

Internal
Input–Output R Internal

Input–Output S

Input J

Input J

Output B

Input A

Black Box Requirements:

White Box Requirements:

Subject System

Decomposition

Internal
Role Y

Physical
Component N31

Physical
Component N40

Internal
Role X

Internal
Role Z

Subject System – Logical Architecture

Subject System – Physical Architecture

“———————————”
“———————————”

“———————————”
“——————————–—”
“——————————––—”

Figure 12. Related extract from MBSE design review guide

Whether viewed as composition (bottom up, emergence) or
decomposition (top down), the ability to effectively answer Question 2
above is central to the design or design review process. Question 2 is about
Hamilton’s Principle in a specific domain setting. A verified library of
knowledge of the related emergence or decomposition patterns that apply
in an enterprises’ or industry’s or society’s domains can be valuable. The
capture and verification of such a library can be seen to be a form of system
science in the tradition of the domain-specific hard sciences—whether the
domain is lower level or high-level systems discussed above.

CONCLUSIONS AND IMPLICATIONS FOR FUTURE ACTION
1. Like the other engineering disciplines, systems engineering can

be viewed as founded on “real” physical phenomena—the system
phenomenon—for which experimentally verified, mathematically
modeled hard science, laws, and first principles have existed for 150
years, dating to Hamilton, or earlier, to Newton.

2. Systems engineering not only has its own phenomenon, but the
phenomena upon which the traditional engineering disciplines (civil,
mechanical, chemical, electrical) are based can themselves all be seen
to be derivable from the system phenomenon. (Note carefully that
nothing about this suggests modeling behavior of an aircraft carrier
from models of molecules—it simply notes that the same general
interaction-based system phenomena is the basis of emergence of
behavior at each higher system level.)

3. The system phenomenon supports the emergence of hard sciences,
laws, and first principles for higher level systems of critical impor-
tance to the well-being of humankind.

4. Systems engineering, along with its related scientific foundations, is
a young and still emerging discipline. The re-planting of systems en-

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

24

gineering in a model-based framework is an important step
toward strengthening the discipline but requires a stronger
model framework for that to occur, and the system phenom-
enon points the way to a key part of that framework.

Implications for future action include:
1. Beyond the scope of this paper, there are also other aspects

of that strengthened modeling framework in need of atten-

tion. The purpose-oriented nature of engineering reminds
us that a stronger representation of value, fitness space, and
selection is a part of that framework (Schindel 2013b).

2. The INCOSE MBSE Patterns Working Group is practicing
the PBSE representation of S*Patterns, which are MBSE
models of recurring whole-system characteristics important
to systems engineering. Participation in this INCOSE
working group is invited (INCOSE Patterns WG).

REFERENCES
 ■ Adcock, Rick, ed. “Guide to the Systems Engineering Body of

Knowledge (SEBoK).” http://sebokwiki.org/wiki/Guide_to_the_
Systems_Engineering_Body_of_Knowledge_(SEBoK)

 ■ Arthur, W. Brian. 2009. The Nature of Technology: What It Is
and How It Evolves. Free Press.

 ■ Ashby, William Ross. 1956. An Introduction to Cybernetics.
Wiley.

 ■ Beihoff et al. 2014. “A World in Motion: Systems Engineering
Vision 2025, International Council on Systems Engineering.
San Diego, US-CA.

 ■ Bertalanffy, L. von. 1969. General System Theory: Foundations,
Development, Applications, George Braziller Inc.; Revised
edition.

 ■ Braha, D., A. Minai, Yaneer Bar-Yam, eds. 2006. Complex
Engineered Systems: Science Meets Technology. New England
Complex Systems Institute (NECSI), Cambridge, US-MA:
Springer.

 ■ Braha, Dan, and Yaneer Bar-Yam. 2007. “The Statistical
Mechanics of Complex Product Development: Empirical and
Analytical Results.” Management Science, 53 (7): 1127–1145.

 ■ Cardwell, D. S. L. 1971. From Watt to Clausius: The Rise of
Thermodynamics in the Early Industrial Age. London, GB:
Heinemann..

 ■ Checkland, P. 1999. System Thinking, System Practice.
Chichester, GB: Wiley.

 ■ Cowan, George, David Pines, and David Meltzer. 1994.
Complexity: Metaphors, Models, and Reality. Proceedings
Volume XIX, Santa Fe Institute Studies in Science of
Complexity, Santa Fe, US-NM: Addison-Wesley.

 ■ Forbes, Nancy, and Basil Mahon. 2014. Faraday, Maxwell,
and the Electromagnetic Field: How Two Men Revolutionized
Physics. Amherst, US-NY: Prometheus Books.

 ■ Friedman, Milton and Rose Friedman. 1980. Free to Choose: A
Personal Statement. New York, US-NY: Harcourt.

 ■ Guiggiani, Massimo. 2014. The Science of Vehicle Dynamics:
Handling, Braking, and Ride of Road and Race Car. Dordrecht,
NL: Springer.

 ■ Hankins, T. 2011. Sir William Rowan Hamilton. Baltimore,
US-MD: Johns Hopkins University Press.

 ■ Holdren, John P., Eric S. Lander, et al. 2014. “Report to the
President—Better Health Care and Lower Costs: Accelerating
Improvement Through Systems Engineering.” Executive Office
of the President, President’s Council of Advisors on Science
and Technology, May. http://www.whitehouse.gov/ostp/pcast

 ■ Hoffman, C. and W. Schindel. 2015. “Systems Engineering
Community of Practice Social Network Pattern.” Presented
at the INCOSE 9th Annual Great Lakes Regional Conference,
Cleveland, US-OH, 23-25 October.

 ■ Holland, John H. 1998. Emergence: From Chaos to Order. New
York, US-NY: Perseus, 1998.

 ■ INCOSE MBSE Initiative Patterns Working Group. http://
www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns .

 ■ INCOSE Patterns Working Group. n.d. “MBSE Methodology
Summary: Pattern-Based Systems Engineering (PBSE), Based

On S*MBSE Models” V1.5.5A. http://www.omgwiki.org/MBSE/
doku.php?id=mbse:pbse .

 ■ Kauffman, Stuart. 2000. Investigations, Oxford, GB: Oxford
University Press.

 ■ Levi, M. 2014. Classical Mechanics with Calculus of Variations
and Optimal Control. Providence, US-RI: American
Mathematical Society.

 ■ MacArthur Robert H., and Edward O. Wilson. 2001. The
Theory of Island Biogeography, Princeton, US-NJ: Princeton
University Press.

 ■ Mokyr, Joel. 2009. The Enlightened Economy: An Economic
History of Britain 1700-1850, New Haven, US-CT: Yale
University Press.

 ■ Morris, Charles R. 2012. The Dawn of Innovation: The First
American Industrial Revolution. New York, US-NY: Public
Affairs.

 ■ Pauling, L. 1960. The Nature of the Chemical Bond and the
Structure of Molecules and Crystals: An Introduction to Modern
Structural Chemistry 3rd edition. Ithaca, US-NY: Cornell
University Press.

 ■ Perez, Tristan, and Thor I. Fossen. 2007. “Modelling and
Simulation of Marine Surface Vessel Dynamics.” Tutorial,
IFAC Conference on Control Applications in Marine Systems,
Bol, HR.

 ■ Pérez-Arriaga, Ignacio, et al. 2013. “From Distribution
Networks to Smart Distribution Systems: Rethinking the
Regulation of European Electricity DSOs.” THINK Project
Final Report, European University Institute, Florence, IT.

 ■ Pratt, Roger W., ed. 2000. Flight Control Systems: Practical
Issues in Design and Implementation. IEE Control Engineering,
Padstow, GB: TJ International.

 ■ Prigogine, Ilya. 1980. From Being to Becoming: Time and
Complexity in the Physical Sciences. US: Freeman.

 ■ Rogers, Everett M. 2003. Diffusion of Innovations Fifth Edition.
New York, US-NY: Free Press.

 ■ Schindel, W. 2015. “Introduction to the Agile Systems Pattern:
An MBSE-Based System Pattern, with Implications for Agile
Modeling.” Presented at INCOSE IW2015 MBSE Workshop
Breakout Session: Agile Modeling and Modeling Agile
Systems, 24 January. http://www.omgwiki.org/MBSE/doku.
php?id=mbse:incose_mbse_iw_2015:breakout_out_ses sion_agile_
modeling .

 ■ Schindel, W. 2013a. “System Interactions: Making The Heart of
Systems More Visible,” Presented at the INCOSE 7th Annual
Great Lakes Regional Conference, West Lafayette, US-IN, 5-6
October.

 ■ Schindel, W. 2013b. “Systems of Innovation II: The Emergence
of Purpose.” Paper presented at the 23rd Annual International
Symposium of INCOSE, Philadelphia, US-PA, 24-27 June.
Schindel, W. 2011. “What Is the Smallest Model of a System?”
Paper presented at the 21st Annual International Symposium
of INCOSE, Denver, US-CO, 20-23 June.

> continued on page 32

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

25

INTRODUCTION

 ABSTRACT
System complexity continues to grow, creating many new challenges for engineers and decision makers. To maximize value delivery,
“both” systems engineering and decision analysis are essential. The systems engineering profession has had a significant focus on
improving systems engineering processes. While process plays an important role, the focus on process was often at the expense
of foundational engineering axioms and their contribution to system value. As a consequence, systems engineers were viewed as
process developers and managers versus technical leaders with a deep understanding of how system interactions are linked to
stakeholder value. With the recent shift toward model-based systems engineering (MBSE), systems engineering is “getting back
to basics,” focusing on value delivery via first principles, using established laws of engineering and science. This paper describes
how pattern-based systems engineering (PBSE), as outlined within INCOSE’s model-based systems engineering (MBSE) initiative,
explicates system value through modeling of first principles, re-uniting systems engineering and decision analysis capabilities.

Explicating System Value
through First Principles:
Re-Uniting Decision
Analysis with Systems
Engineering
Troy Peterson, tpeterson@systemxi.com; and Bill Schindel, schindel@ictt.com
Copyright © 2016 by Troy A. Peterson and Bill Schindel. Published and used by INCOSE with permission.

[Editor: This paper for systems engineering foundations refers to the Systems Engineering Handbook 4th edition (Copyright 2015 by the
International Council on Systems Engineering), ISO 15288:20915, and the Systems Engineering Vision 2020 published by INCOSE in 2007.]

Complexity in systems and
decisions: Today, the scope of
engineering efforts often rapidly
expands to include more and

more external interactions. Additionally,
within a defined system boundary, systems
are becoming significantly more intercon-
nected. Collectively this is accelerating the
number of interactions engineers need to
understand and manage. This increase and
the associated challenges show no sign
of abatement as shown in Figure 1 which
depicts the explosion of the Internet of
things (IoT). IoT is a significant contrib-
utor to the increase in connectedness and
system complexity, and we are still only
in the formative stages of this exponential
growth. Furthermore, this interconnect-

ed phenomenon is ubiquitous, occurring
across domains and with systems we use
every day.

In addition to the increased density of
interactions, the pace of contextual change
is also increasing. The contextual dynamics
have the effect of continually altering a
system’s fitness and value. This further com-
plicates matters, adding the challenge to
design into systems the necessary flexibility
and agility, giving rise to a more stochastic
view of design rather than a more tradition-
al steady state, deterministic perspective.

This context obviously brings about
many challenges for engineers and decision
makers, which extend beyond the tech-
nical domain. Given the complexity and
web of interactions, a decision that may

appear simple at first could have significant
strategic, social, political, and economic
impact. Where an engineer or manager’s
intuition may have been sufficient decades
ago – today, when trying to consider of
second, third and fourth order impacts, the
complexity can quickly overwhelm any one
person or even a highly capable team.

In his book Notes on the Synthesis of
Form, Christopher Alexander (1964)
articulated this context eloquently over 50
years ago. The following statements are
excerpts from his book:

Today more and more design problems are
reaching insoluble levels of complexity

At the same time that problems increase

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

26

in quantity, complexity and difficulty, they
also change faster than before

Trial-and-error design is an admirable
method. But it is just real world trial and
error which we are trying to replace by a
symbolic method. Because trial and error
is too expensive and too slow

These statements are more applicable
today than they were 50 years ago and they
will be even more applicable 50 years from
now. Consequently, approaches which
leverage symbolic method, speed feedback
and iterations, build in agility and ensure a
holistic view are essential. One important
aspect of ensuring our methods emphasize
such results is to better couple the decision
making and innovation processes and
related models.

History and a call for a new view: The
history of systems engineering has strong
ties to fundamental engineering disciplines,
the sciences and to mathematical modeling
and managerial decision support (manage-
ment sciences)–often referred to as decision
analysis, industrial engineering, or opera-
tions research. So, in many ways a discus-
sion of how to integrate these disciplines is
a return to an early foundational element of
systems engineering.

To help address the complexity previ-
ously outlined and to better re-integrate
systems engineering and decision analysis
many efforts are underway within indus-
try, the government and non-profits. For
example, a working group within INCOSE
focuses on decision analysis with the pur-
pose of advancing the state of the practices,
education, and theory of decision anal-

ysis and its relationship to other systems
engineering disciplines. The council of
engineering systems universities (CESUN)
is another example which was formed to
address the great challenges posed by large-
scale, interconnected, and therefore highly
complex and dynamic, socio-technical sys-
tems. The excerpt from the CESUN website
which follows articulates the contributions
of systems engineering and decision analy-
sis to engineering systems.

As many engineers began to delve
deeper and deeper into science, some
others stressed the design perspective
and explored how to solve the problems
arising from greater technical complexity.
Operations research, systems and decision
analysis, industrial engineering, systems
engineering—these all contributed to
the expansion of engineering—but at
a certain point there was a recognition
that some of the greatest challenges were
precisely where the technical systems had
their interfaces with people, policies, reg-
ulations, culture, and behavior (CESUN
n.d.).

This excerpt also calls out the expanded
and new view at the “… interfaces with
people, policies, regulations, culture and
behavior.” This perspective brings with it a
diverse set of stakeholders and an expanded
view of value. To achieve value delivery in
this new view we must have an improved
coupling of systems engineering and deci-
sion analysis. The disciplines are absolutely
complementary with systems engineering
providing an overall approach to system-
atically innovate and decision analysis

providing a systematic approach to think
about, experiment with, and analyze com-
plex problems or opportunities throughout
the innovation process.

To fully integrate these disciplines the
third bullet from Alexander noted above
makes an important observation about
the use of “…symbolic method. Because
trial and error is too expensive and slow.”
This brings us first to the use of models
and model-based systems engineering
(the symbolic part) and then to the agile
systems engineering life cycle pattern (the
sped-up “trial and error” part).

One might at first assume that this sets
up a rivalry between symbolic model-based
analysis and simulation versus waiting
for post-development market judgment.
However, the agile systems engineering life
cycle pattern (Schindel and Dove 2016)
reminds us of the limits of symbolic models
and provides a “middle way:” Using “the
market” throughout the development
cycle, moving “who makes the decisions”
of development-time decision analysis, to
include the ultimate decision-maker—the
stakeholder.

RE-UNITING DECISION ANALYSIS WITH
SYSTEMS ENGINEERING

Many frameworks group, categorize or
connect decision analysis with systems
engineering. This is true within the over-
view of system engineering provided by
the Defense Acquisition University shown
in Figure 2, and with the INCOSE Systems
Engineering Handbook (Walden et al. 2015)
as shown in Figure 3. Figure 4 is from the
agile systems engineering life cycle man-
agement (ASELCM) pattern (Schindel and
Dove 2016).

The process view: The Defense Acqui-
sition University states that the decision
analysis process transforms a broadly stated
decision opportunity into a traceable, de-
fendable, and actionable plan. Furthermore,
that it is performed at all systems levels and
across the life cycle. The DAU outlines deci-
sion analysis integration specifically with
the process areas of technical planning,
assessment, stakeholder requirements, re-
quirements analysis and architecture design
all shown in Figure 2. INCOSE also notes
the decision management process, which
includes decision analysis, integrates with
all other systems engineering processes in
its system life-cycle process N2 chart found
in the Appendix A of the Systems Engineer-
ing Handbook (2015). Figure 3 provides
a view of the system life cycle processes
aligned with ISO 15288 and INCOSE’s
Systems Engineering Handbook. The ASE-
CLM reference boundary diagram shown
in Figure 4 contains the same systems
engineering processes in an abstract form

Figure 1. Explosive growth in the Internet of things (Cisco n.d.)

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

27

as life cycle system management processes
(shown in yellow boxes) however it also
introduces the target system, target system
models and the target environment all of
which are essential when considering how
to fully integrate systems engineering and
decision analysis.

While these views and their associated
processes play an essential role in engi-
neering complex systems this view alone
is insufficient. Taken to the extreme, some
focused solely on systems engineering
processes omitting an essential aspect of
fully integrating systems engineering and
decision analysis found in how system in-
teractions deliver value. As a consequence,
systems engineers at times have been
viewed solely as process developers and
managers versus technical leaders with a
deep understanding of how system interac-
tions are connected to stakeholder value.

For well over a decade the systems
engineering profession has had a significant
focus on improving systems engineering
processes – as illustrated by CMMI (2010)
and ISO 15288. Connections between the
systems engineering and decision analysis
exist at a high level as shown in Figures 2
and 3 as well as within many more detailed
process architectures. These connections
are important and help program teams
manage the complex system of innovation.
However, there is a deeper need in con-
necting these disciplines, both more deeply
and in a more explicit way to ensure value
delivery.

Models of process vs models of sys-
tems: Process integration is important
and helpful, but alone it is not sufficient to
manage the complexity in systems today—
in fact it can become nearly impossible to
avoid unintended consequences without
detailed models of the target system.
Much of the integration effort of systems
engineering and decision analysis has been
focused on process — the infrastructure for
information about the system of interest.
It has not been, however, as focused on the
information that passes through the process
about the target system.

With the recent shift toward mod-
el-based systems engineering (MBSE), the
systems engineering discipline is “getting
back to basics” and back to the founda-
tional engineering axioms built upon first
principles and established laws of science
and engineering. This focus is more aligned
with the genesis of classical mechanics,
beginning with Newtonian interactions and
their emergent properties, so that the whole
is greater than the sum of the parts. First
principles as used here mean interactions
of force, energy, mass flow, and informa-
tion flow. This includes established laws of
physics and emerging higher-level laws. For

Decision Management

MeasurementInformation
Management

Configuration
ManagementRisk Management

ORGANIZATIONAL
PROJECT–ENABLING

PROCESSES

Stakeholder
Requirements

Definition

Project Portfolio
Management

AGREEMENT
PROCESSES

Acquisition

Supply

Infrastructure
Management

Life Cycle Model
Management

Human Resource
Management

Quality
Management

Requirements
Analysis

Implementation

Verification

Process
Guidelines

Transition

Disposal

Operation Maintenance

Validation

Integration

Architectural
Design

Project Assessment
and ControlProject Planning

PROJECT PROCESSES

TECHNICAL PROCESSES

Figure 3. INCOSE system life-cycle processes overview per ISO 15288.

3. System of Innnovation (SOI)

(Substantially all the ISO15288 processes are included in all four Manager roles)

1. Target System

Target
Environment

2. Target System (and Component) Life Cycle Domain SystemLearning & Knowledge
Manager for LC Managers

of Target System

Learning & Knowledge
Manager for Target Systems

Life Cycle Manager
of LC Managers

LC Manager of
Target System

Figure 4. Iconic view of the agile systems engineering life cycle management
(ASELCM) reference boundaries (Schindel and Dove 2016)

Systems Engineering
Operational

Need

Requirements

Decomposition Re
ali

za
tio

n

Design

Technical Processes

Technical Management Processes

Enables a balanced approach for delivering capability to the warfighter

Technical Processes
• Stakeholder

Requirements
Definition

• Requirements
Analysis

• Architecture
Design

• Technical Planning
• Technical Assessment

• Transition
• Validation
• Verification
• Integration
• Implementation

• Decision Analysis • Requirements Management
• Risk Management
• Configuration Management

• Technical Data Management
• Interface Management

Product

Validated
Solution

Delivered
Capability IOC/FOC

OT&E

DT&E

Figure 2. DAU systems engineering diagram (DAU n.d.)

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

28

example, this could include well-formed
and understood interactions and patterns
within domains such as automotive, health-
care, energy, and others (Schindel 2016).

Using models to connect first principles
to stakeholder value is first accomplished
through an explicit connection in the
metamodel of how we model systems.
More specifically by expressing and directly
connecting both stakeholder value and
system interactions. At risk in this connec-
tion is misunderstanding the value to first
principle connections, for example having
a narrowly defined stakeholder space and
omitting one or more stakeholders. This
risk is addressed in the agile systems engi-
neering life cycle pattern, which expresses
stakeholder value as demonstrated by
selection interactions in the target system
environment which more frequently incor-
porate feedback and design iterations.

MODEL-BASED SYSTEMS ENGINEERING
INCOSE defines model-based systems

engineering (MBSE) as “the formalized
application of modeling to support system
requirements, design, analysis, verification
and validation activities beginning in the
conceptual design phase and continuing
throughout development and later life cycle
phases….” (INCOSE 2007). The Object
Management Group’s MBSE wiki notes that
“Modeling has always been an important
part of systems engineering to support
functional, performance, and other types of
engineering analysis” (OMG n.d.).

The application of MBSE has increased
dramatically in recent years and is becom-
ing a standard practice to help manage the
complexity seen in systems today. MBSE
has been enabled by the continued maturity
of modeling languages such as SysML® and
significant advancements made by tools
vendors. These advancements are improv-
ing communications and providing a foun-
dation to integrate diverse models. MBSE is
often discussed as being composed of three
fundamental elements – tool, language,
and method. The third element, method,
however, has not always been given proper
consideration. Because the language and
tool are relatively method independent, it is
methodology which further differentiates
the effectiveness of any MBSE approach and
its ability to help manage the complex and
interrelated functionality of today’s highly
interconnected systems. For the approach
discussed in this paper, the “methodology”
includes not only process as discussed in
the previous section in accordance with
ISO 15288, INCOSE, DAU, or others, but
more significantly the very concept of the
underlying system information those pro-
cesses produce and consume, independent
of modeling language and tools.

PATTERN-BASED SYSTEMS ENGINEERING
Pattern-based systems engineering

(PBSE) as outlined within INCOSE’s mod-
el-based systems engineering (MBSE) ini-
tiative (OMG n.d.), is a methodology which
formalizes historical pattern efforts using
explicit, re-usable, configurable S*Models
(S*Patterns). Moreover, it explicates system
value through an understanding of system
interactions and their projection onto value
space (features). Pattern-based systems
engineering (PBSE) can address 10:1 more
complex systems with 10:1 reduction in
modeling effort, using people from a 10:1
larger community than the “systems ex-
pert” group, producing more consistent and
complete models sooner. These dramatic
gains are possible because projects using
PBSE get a “learning curve jumpstart”
from an existing pattern and its previous
users, rapidly gaining the advantages of its
content, and improving the pattern with
what is learned, for future users. The major
aspects of PBSE have been defined and
practiced for many years across a number
of enterprises and domains. To increase
awareness of the PBSE approach, two years
ago INCOSE started a patterns challenge
team (now the Patterns Working Group)
within the INCOSE MBSE initiative.

The term “pattern” appears repeated-
ly in the history of design, such as civil
architecture, software design, and systems
engineering (Alexander 1977, Gamma et
al. 1995, and Cloutier 2008). These are all
similar in the abstract, in that they refer
to regularities that repeat, modulo some
variable aspects, across different instanc-
es in space or time. However, the PBSE
methodology referred to by this paper is
distinguished from those cases by certain
important differences:

1. S*Patterns are model-based: We are
referring here to patterns represent-
ed by formal system models, and
specifically those which are re-usable,
configurable models based on the
underlying S*Metamodel. (By con-
trast, not all the historical “patterns”
noted above are described by MBSE
models.)

2. Scope of S*Patterns: We are referring
here to patterns which will usually
cover entire systems, not just small-
er-scale element design patterns with-
in them. For this reason, the typical
scope of an S*Pattern applications
may be thought of as re-usable, con-
figurable models of whole domains
or platform systems—whether formal
platform management is already rec-
ognized or not. (By contrast, most of
the historical “patterns” noted above
describe smaller, reusable subsystem
or component patterns.) S*Patterns
are similar to architectural frame-
works, although they contain more
information.

Fundamental to pattern-based systems
engineering is the use of the S*Metamodel
(summarized by Figure 5), a relational/
object information model used in the
Systematica™ methodology to describe
requirements, designs, and other infor-
mation in S*Models such as verification,
failure analysis, etc. (Schindel and Peterson
2013). A metamodel is a model of other
models—a framework or plan governing
the models that it describes. These may be
represented in SysML®, database tables,
or other languages. As an MBSE enabled
approach PBSE can be implemented across
multiple third-party commercial-off-the-

Stakeholder Feature

State

Input/
Output

System

System of
AccessInterface

Functional
Role

Design
Component

Functional
Interaction

(Interaction)

Technical
Requirement

Statement

Design/
Constraint
Statement

attribute

Stakeholder
Requirement

Statement
attribute attribute

attribute

attributeattribute

WB

BB

“A” Matrix
Couplings

“B” Matrix
Couplings

(logical system)

(physical system)

Stakeholder
World

Language

Technical
World

Language

High Level
Requirements

Detail Level
Requirements

High Level
Design

Figure 5. A summary view of the S*Metamodel

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

29

shelf (COTS) tools and languages (that is,
product line management PLM systems,
modeling tools, architecture tools, databas-
es, SysML, IDEF).

Specifically, an S*Pattern is a re-usable,
configurable S*Model of a family of systems
(product line, set, ensemble etc.) as shown
in Figure 6.

Over several decades, pattern-based sys-
tems engineering has been developed and
practiced across a range of domains, in-
cluding carrier grade telecommunications,
engines and power systems, automotive
and off-road heavy equipment, military and
aerospace, medical devices, pharmaceutical
manufacturing, consumer products, and
advanced manufacturing systems.

Engineers in these and many other
domains spend resources developing or
supporting systems that virtually always
include major content from repeating
system paradigms at the heart of their
business (for example, core ideas about
airplanes, engines, switching systems, etc.).
Despite this, the main paradigm apparent
in most enterprises to leverage “what we
know” is to build and maintain a staff
of experienced technologists, designers,
application engineers, managers, or other
human repositories of knowledge.

The physical sciences are based upon the
discovery of regularities (patterns), which
we say express laws of both nature and
systems value markets. Although re-usable
content has some history in systems engi-
neering, there is less recognition of a set of
“Maxwell’s Equations” or “Newton’s Laws”
expressing the nature of the physical world,
as the basis of those systems patterns. If
electrical engineering and mechanical
engineering disciplines have physical law
at their foundation, why cannot systems
engineering do the same?

By contrast, the S*Metamodel is focused
on the very physical interactions that are
the basis of the physical sciences, and
which we assert are at the heart of the defi-
nition of system (in this methodology) as a
collection of interacting components. The
S*Patterns that arise from the explicit rep-

resentation of physical Interactions re-form
the foundation of system representations
to align more explicitly with the physical
sciences.

At its very foundation, the ASELCM
pattern of PBSE links decision analysis and
systems engineering ensuring system con-
figurations are directly traceable and driven
by stakeholder values. PBSE explicates
system value via a formal model of interac-
tions, whether force, mass flow, energy or
information exchanges which are founda-
tional to science and to the first principles
of system design and market responses.

SYSTEM VALUE – STAKEHOLDER FEATURES
System value is measured by the selec-

tion interactions of stakeholders or their
representatives; in the S*Metamodel these
values are expressed explicitly as features.
In the ASELCM pattern, these selections
are as explicit as the (other) interactions of
the system of interest. Features and their
associated attributes contain the value
space for a system of interest codified as
formalized stakeholder needs/values. The
connection between stakeholders and
features is clear within the S*Metamodel
shown in Figure 5. Features are shown at
the top of the figure using a black box. Fig-
ure 7 reformats and displays just a portion
of the S*Metamodel clearly annotating
the classes from which we derive system
value. Features are parameterized by feature
attributes which provide a measure of
value – including all stakeholder measures
of effectiveness (MOEs). Within Figures 5
and 7 these feature attributes are represent-
ed by a white elongated oval adjacent to the
black feature box, or by other symbology in
SysML or other language.

As outlined in the introduction, just as
the system boundary has broadened, the set
of stakeholders and their respective values

Stakeholder Feature

State

Input/
Output

System

System of
AccessInterface

Functional
Role

Design
Component

Functional
Interaction

(Interaction)

Technical
Requirement

Statement

Design
Constraint
Statement

attribute

Stakeholder
Requirement

Statement
attribute attribute

attribute

attributeattribute

WB

WB
BB

BB

“A” Matrix
Couplings

“B” Matrix
Couplings

(logical system)

(physical system)

Stakeholder
World

Language

Technical
World

Language

High Level
Requirements

Detail Level
Requirements

High Level
Design

Stakeholder Feature

State

Input/
Output

System

System of
AccessInterface

Functional
Role

Design
Component

Functional
Interaction

(Interaction)

Technical
Requirement

Statement

Design
Constraint
Statement

attribute

Stakeholder
Requirement

Statement
attribute attribute

attribute

attributeattribute

WB

WB
BB

BB

“A” Matrix
Couplings

“B” Matrix
Couplings

(logical system)

(physical system)

Stakeholder
World

Language

Technical
World

Language

High Level
Requirements

Detail Level
Requirements

High Level
Design

Stakeholder Feature

State

Input/
Output

System

System of
AccessInterface

Functional
Role

Design
Component

Functional
Interaction

(Interaction)

Technical
Requirement

Statement

Design
Constraint
Statement

attribute

Stakeholder
Requirement

Statement
attribute attribute

attribute

attributeattribute

WB

WB
BB

BB

“A” Matrix
Couplings

“B” Matrix
Couplings

(logical system)

(physical system)

Stakeholder
World

Language

Technical
World

Language

High Level
Requirements

Detail Level
Requirements

High Level
Design

Improve
Pattern

General
System
Pattern

Product Lines or
System Families

Individual Product
or System Configurations

Configure,
Specialize

Pattern

Metamodel for
Model-Based Systems
Engineering (MBSE)

Pattern Hierarchy for
Pattern-Based Systems

Engineering (PBSE)

Figure 6. Pattern hierarchy for PBSE

System Value Space
(Trade Space, Fitness Landscape)

Stakeholder

Feature

Functional
Interaction

Functional
Role

Functional
Interaction

Functional
Role

Subject System:
First Principles-Based

Interaction Space

External Stakeholder Domain:
First Principles-Based

Selection Interaction Space

attribute

attributeattribute

Figure 7. S*Agile systems engineering life cycle pattern extract, highlighting system
value which is generated via interactions – the first principles of engineering and
science

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

30

must also be broadened. It is important to
note that stakeholders include all classes of
stakeholders and not just those who may
purchase or use a product or system of
interest. Stakeholders include shareholders,
manufacturers, society, and others. Every
trade off or decision which sets the direc-
tion of a system design is a value judgment
(selection interaction) from the perspective
of one or more stakeholders. Given this
view it is absolutely necessary to have a ho-
listic view and identify the full complement
of stakeholders.

In fact, it is the omission of stakehold-
ers early in a systems program that often
leads to costly rework, redesign, failures in
system validation and sometimes program
cancelation. When feature space is mature
and expansive it can significantly reduce
technical and programmatic risk. While
ensuring the set of stakeholders is compre-
hensive it should not be assumed however
that all stakeholders and their associated
values are equal.

Since feature space contains the full com-
plement of stakeholder values (the fitness
landscape) it contains the entire trade space
for the design and development of systems.
This includes the full breadth and hierar-
chical depth of value including objectives
and measures, weights, and rationale
prescribed in texts focused on decision
analysis (Keeney 1992, Clemen and Reilly
2001, and the Defense Acquisition Guide-
book References). With stakeholders and
their features well understood the features
are used to configure systems that conform
to the selections and the dialing in of their
associated attributes.

Feature space is where selection-based
decision analysis occurs. It is used as the
basis of analysis and defense of all deci-
sion-making including optimization and
trade-offs. This gives rise to the next class of
information in Figures 5 and 7 which deliv-
ers system value – functional interactions.

FIRST PRINCIPLES — FUNCTIONAL
INTERACTIONS

Functional interactions are what define
a system (a group of interacting, elements
forming a complex whole) and through
which the system delivers value. Functional
interactions involve the exchange of forces,
mass, energy, or information. When we
think of these fundamental exchanges, it
brings to mind the work one would become
intimately familiar in the study of physics,
chemistry, mechanics, and many other
engineering, science, or mathematics. These
exchanges return us to the first principles of
these disciplines and how they apply to the
systems we design and develop. Addition-
ally, as our understanding grows within a
particular domain or with a specific type

of system, we often begin to learn the first
principles of these systems which are also
expressed as interactions. These interac-
tions can be at the component, subsystem
or system level, and especially with the ex-
ternal environment of a system of interest.

Alternatives as outlined within decision
analysis are the options to evaluate against
decision criteria or the objectives and
measures. Functional roles, displayed as the
yellow box in Figures 5 and 7, are solution
neutral logical roles which participate in
an interaction. An identified functional
interaction may be implemented by various
combinations of functional roles. This gives
rise to many alternatives when making
traditional functional allocations.

In Figure 7 the feature and functional
role attributes are coupled as shown by
the dotted line. This particular coupling
qualifies the fitness or trade space. The
feature attribute defines the measure of ef-
fectiveness and the functional role attribute
provides a means and measure of value
delivery (level of performance) depending
upon the selection of design components
filling the functional role.

Parameterization and configura-
tion: S*Models are intended to establish
modeled feature sets for all stakeholders.
This (features) portion of an S*Pattern is
then used to configure the pattern for indi-
vidual applications, product configurations,
or other instances. It turns out that the
variation of configuration across a product
line is always for reasons of one stakehold-
er value or another, so feature selection
becomes a proxy for configuring the rest of
an S*Pattern into a specifically configured
instance model.

Because S*Features and their feature at-
tributes (parameters) characterize the value
space of system stakeholders, the resulting
S*Feature configuration space becomes the
formal expression of the trade space for the
system. It is therefore used as the basis of
analysis and defense of all decision-making,
including optimizations and trade-offs. The
S*Feature space also becomes the basis of
top-level dashboard model views that can
be used to track the technical status of a
project or product. All “gaps” and “over-
shoots” in detailed technical requirements
or technologies are projected into the
S*Feature space to understand their relative
impact.

As illustrated by the “down stroke” in
Figure 6, a generic S*Pattern of a family
of systems is specialized or “configured”
to produce an S*Model of a more specific
system, or at least a narrower family of
systems. Since the S*Pattern is itself already
built out of S*Metamodel components, for
a mature pattern the process of producing a
“configured model” is limited to two trans-

formation operations:
1. Populate: Individual classes, rela-

tionships, and attributes found in the
S*Pattern are populated (instantiat-
ed) in the configured S*Model. This
can include instances of features,
interactions, requirements, design
components, or any other elements
of the S*Pattern. These elements are
selectively populated, as not all nec-
essarily apply. In many cases, more
than one instance of a given element
may be populated (for example,
four different seats in a vehicle, five
different types of safety hazard, etc.).
Population of the S*Model is driven
by what is found in the S*Pattern,
and what features are selected from
the S*Pattern, based on stakeholder
needs and configuration rules of the
pattern, built into that pattern.

2. Adjust values of attributes: The values
of populated attributes of features,
functional roles/technical require-
ments, and physical components are
established or adjusted.

This brings into sharp focus what are
the fixed and variable aspects of S*Patterns
(sometimes also referred to as “hard points”
and “soft points” of platforms). The variable
data is called “configuration data.” It is
typically small in comparison to the fixed
S*Pattern data. Since users of a given S*Pat-
tern become more familiar over time with
its fixed (“hard points”) content (for exam-
ple, definitions, prose requirements, etc.),
this larger part is typically consulted less
and less by veterans, who tend to do most
of their work in the configuration data (soft
points). That data is usually dominated by
tables of attribute values, containing the key
variables of a configuration. Since this is
smaller than the fixed part of the pattern, in
effect the users of the pattern experience a
“data compression” benefit that can be very
significant, allowing them to concentrate
on what is or may be changing (Schindel
2011a).

Just as feature attributes parameter-
ize stakeholder values, functional role
attributes parameterize technical behavior.
The coupling of these attributes shown in
Figures 5 and 7 provides a model-based
approach to coupling the first principles of
engineering and science with stakeholder
value. It is through this coupling that pat-
tern-based systems engineering explicates
system value through first principles.

The agile system life cycle
pattern: INCOSE is currently executing the
2015-2016 agile systems engineering life
cycle model (ASELCM) project (Schindel
and Dove 2016). Working across a series of
North American and European enterprises

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

31

and industries, this discovery project is
articulating and validating the ASELCM
Pattern mentioned in this paper, in the
form of a formal S*Pattern.

The ASELCM pattern explicates the
points summarized in this paper, including:

1. The deeper re-integration of decision
analysis and systems engineering,
with the decisions shared between
“internal” decision-makers and
agile-measured “external” stakehold-
er representatives, whose selection
behaviors are studied as a faster and
surer path to good decisions.

2. The use of explicit MBSE models
to express life cycle system require-
ments, design, generated from
MBSE patterns by configuration and
reconfiguration, as the environment
changes in non-deterministic ways,
and as a point of accumulation of
learning.

CONCLUSIONS
System complexity and

interconnectedness continue to rapidly
increase, making systems development
extremely challenging. Additionally, the
context in which developed systems operate
is continually changing, altering the fitness
and value delivered systems provide. The
systems engineering discipline has made
many great improvements through process
definition and integration. While these
improvements have enabled and structured
innovation, they are not sufficient to
overcome the outlined challenges, which
are likely to only increase over time. Our
traditional development activities must
be revisited and enhanced to manage

significant complexity, nth order impacts,
highly dynamic contexts, complicated
decisions and significant ambiguity.

An important aspect to an improved
approach is to better integrate decision
analysis and systems engineering and to
leverage “symbolic method” (to the extent
that symbolic analysis and simulation are
sufficient) while also improving ability to
capture stakeholder and market judgments
without undue delay (to the extent that
empirical experiment is also required).
This leads us to modeling methods and
the promise provided by model-based
systems engineering. As a particular MBSE
methodology, PBSE is particularly well
suited to model complex systems. With
interactions and features at the core of the
S*Metamodel, PBSE focuses the engineer-
ing effort on how systems fundamentally
provide value. It couples system value,
experienced by stakeholders as features,
with the first principles of engineering and
science, expressed as functional interac-
tions, making for a strengthened systems
engineering approach. This approach also
shifts the focus from the innovation process
to the information passing through the pro-
cess, which describes the system of interest,
which ultimately determines the level of
value provided to stakeholders. The explicit
coupling within the modeling approach
permits rapid iteration, configuration,
assessment, and analysis.

PBSE provides a data model and frame-
work that is both holistic and compact. It
addresses the core system science, or first
principles of systems required to design
complex systems by making interactions
more visible and directly relating these to

how they deliver value described by stake-
holders, noted as features in the S*Meta-
model. Additional benefits of the PBSE
approach include:

 ■ Strong expression of fitness land-
scapes as the basis for selection, trades,
improvements, decisions, innovations,
configuration, and understanding of
risk and failure.

 ■ Explication of the system phenomenon
(Schindel 2016) as a real world-based
science and math foundation for sys-
tems engineering, amenable to systems
science, connected to historical math/
science models of other engineering
disciplines, and encouraging discovery
and expression.

 ■ A detailed MBSE approach to platform
management for system families and
product lines.

 ■ Compatibility with contemporary mod-
eling language standards.

 ■ Direct mapping into contemporary
modeling tools, PLM information
systems, and other COTS tools and
enterprise systems, increasing the value
of existing information technologies.

 ■ Deeper support for federated data
across differing information systems,
for integration with emerging open
systems life cycle standard technologies.

Pattern-based systems engineering
(PBSE) is a methodology which explicates
system value through an understanding
and explicit modeling of first principles
better uniting the systems engineering and
decision analysis capabilities.

REFERENCES
 ■ Alexander, Christopher. 1964. Notes on the Synthesis of Form.

Cambridge, US-MA: Harvard University Press.
 ■ Alexander, Christopher, Sara Ishikawa, Murray Silverstein,

Max Jacobson, Ingrid Fiksdahl-King, and Shlomo Angel. 1977.
A Pattern Language. New York, US-NY: Oxford University
Press.

 ■ Bradley, J., M. Hughes, and W. Schindel. 2010. “Optimizing
Delivery of Global Pharmaceutical Packaging Solutions, Using
Systems Engineering Patterns.” Paper presented at the 20th
Annual International Symposium of INCOSE, Chicago, US-IL,
11-15 July.

 ■ Cisco. n.d. Internet of Things (IoT) Graphic https://www.ncta.
com/platform/industry-news/infographic-the-growth-of-the-in-
ternetof-things/ .

 ■ Clemen, R. T., and T. Reilly. 2001. Making Hard Decisions with
DecisionTools®. Pacific Grove, US-CA: Duxbury.

 ■ Cloutier, Robert. 2008. Applicability of Patterns to Architect-
ing Complex Systems: Making Implicit Knowledge Explicit.
VDM Verlag Dr. Müller.

 ■ CMU/SEI. 2010. CMMI® for Development (CMMI-DEV) Ver-
sion 1.3–CMU/SEI-2010-TR-033. Carnegie Mellon University,
Software Engineering Institute, Pittsburgh, US-PA, November.

 ■ CESUN. n.d. http://cesun.mit.edu/about/purpose
 ■ Defense Acquisition University. n.d. https://acc.dau.mil/Commu-

nityBrowser.aspx?id=638297.
 ■ Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlis-

sides. 1995. Design Patterns: Elements of Reusable Object-Ori-
ented Software. Reading, US-MA: Addison-Wesley Publishing
Company.

 ■ ICTT. 2013. Abbreviated Systematica Glossary, Ordered by
Concept V 4.2.2. ICTT System Sciences.

 ■ INCOSE. 2007. Systems Engineering Vision 2020–IN-
COSE-TP-2004-004-02. San Diego, US-CA, September.

 ■ Keeney., R. L. 1992 Value-Focused Thinking — A Path to
Creative Decision Making. Cambridge, US-MA: Harvard
University Press.

 ■ OMG MBSE. n.d. http://www.omgwiki.org/MBSE/doku.php .
 ■ OMG Patterns Working Group. n.d. http://www.omgwiki.org/

MBSE/doku.php?id=mbse:patterns:patterns .
 ■ Schindel, Bill, and Troy Peterson 2013. “Introduction to

Pattern-Based Systems Engineering (PBSE): Leveraging MBSE
Techniques.” Tutorial presented at the INCOSE 2013 Great
Lakes Regional Conference on Systems Engineering, October.

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

32

 ■ Schindel, W. 2005a. “Pattern-Based Systems Engineering: An
Extension of Model-Based SE.” Tutorial at the 15th Annual
International Symposium of INCOSE, Rochester, US-NY, 10-
15 July.

 ■ Schindel, W. 2005b. “Requirements Statements Are Transfer
Functions: An Insight from Model-Based Systems Engineer-
ing.” Paper presented at the 15th Annual International Sympo-
sium of INCOSE, Rochester, US-NY, 10-15 July.

 ■ Schindel, W. 2010. “Failure Analysis: Insights from Mod-
el-Based Systems Engineering.” Paper presented at the 20th
Annual International Symposium of INCOSE, Chicago, US-IL,
11-15 July.

 ■ Schindel, W. 2011a. “The Impact of ‘Dark Patterns’ on Un-
certainty: Enhancing Adaptability in the Systems World.”
Presented at the INCOSE 5th Annual Great Lakes Regional
Conference on Systems Engineering, Dearborn, US-MI, 4-6
November.

 ■ Schindel, W. 2011b. “What Is the Smallest Model of a System?”
Paper presented at the 21st Annual International Symposium
of INCOSE, Denver, US-CO, 20-23 June.

 ■ Schindel, W. 2012. “Integrating Materials, Process & Product
Portfolios: Lessons from Pattern-Based Systems Engineering,”
in Proc. of 2012 Conference of Society for the Advancement of
Material and Process Engineering.

 ■ Schindel, W. 2013. “System Interactions: Making the Heart of
Systems More Visible.” Presented at the INCOSE 7th Annual
Great Lakes Regional Conference on Systems Engineering,
West Lafayette, US-IN, 5-6 October.

 ■ Schindel, W. 2015. “Pattern Based System Engineering
Methodology.” MBSE Initiative, Methodology Summary for
INCOSE, June.

 ■ Schindel, W. 2016. “Got Phenomena? Science-Based Disci-
plines for Emerging Systems Challenges.” Paper submitted
to the 26th Annual International Symposium of INCOSE,
Edinburgh, GB-SCT, 18-21 July.

 ■ Schindel, W., and R. Dove. 2016 “Introduction to the Agile
Systems Engineering Life Cycle MBSE Pattern.” Paper
submitted to the 26th Annual International Symposium of
INCOSE, Edinburgh, GB-SCT, 18-21 July.

 ■ Schindel, W., and V. Smith, 2002. “Results of Applying a
Families-of-Systems Approach to Systems Engineering of
Product Line Families.” SAE International, Technical Report
2002-01-3086.

 ■ Walden, D., et al., ed. 2015. The Systems Engineering Hand-
book: A Guide for System Life Cycle Processes and Activities
Version 4. INCOSE, San Diego, US-CA: Wiley.

ABOUT THE AUTHORS
[Editor: Author biographies were current when the paper was
initially published in 2016.]

Troy Peterson is a Booz Allen Fellow and chief engineer
at Booz Allen Hamilton. His experience spans commercial,
government and academic environments across all product life
cycle phases. Troy is INCOSE’s assistant director for systems
engineering transformation and the co-lead of the Patterns
Working Group. Troy received his B.S. in ME from Michigan
State University, his M.S. in technology management from RPI,
and an advanced graduate certificate in systems design and
management from the MIT. He is also INCOSE CSEP, PMI PMP
and ASQ SSBB certified.

Bill Schindel is president of ICTT System Sciences. His
engineering career began in mil/aero systems with IBM Federal
Systems, included faculty service at Rose-Hulman Institute of
Technology, and founding of three systems enterprises. Bill co-
led a project on systems of innovation in the INCOSE System
Science Working Group, co-leads the Patterns Working Group,
and is a member of the lead team of the INCOSE agile systems
engineering life cycle project.

 ■ Schindel, W., and R. Dove. 2016. “Introduction to the Agile
Systems Engineering Life Cycle MBSE Pattern.” Paper present-
ed at the 26th Annual International Symposium of INCOSE,
Edinburgh, GB-SCT, 18-21 July.

 ■ Schindel, W. 2007. “Improving Design Review.” ICTT System
Sciences.

 ■ Servos, John W. 1996. Physical Chemistry from Ostwald
to Pauling, Reprint Edition, Princeton, US-NJ: Princeton
University Press.

 ■ Sussman, G., and J. Wisdom. 2001. Structure and Interpreta-
tion of Classical Mechanics. Cambridge, US-MA: MIT Press.

 ■ Walden, D., et al., eds. 2015. Systems Engineering Handbook:
A Guide for System Life Cycle Processes and Activities Fourth
Edition. INCOSE, San Diego, US-CA: Wiley.

 ■ Warfield, John N. 2006. An Introduction to Systems Science.
Hackensack, US-NJ: World Scientific Publ.

 ■ Westfall, Richard S. 1980. Never at Rest: A Biography of Isaac
Newton. Cambridge, GB: Cambridge University Press.

 ■ Wymore, A. Wayne. 1967. A Mathematical Theory of Systems
Engineering: The Elements. New York, US-NY: Wiley.

 ■ Wymore, A. Wayne. 1993. Model-Based Systems Engineering.
Boca Raton, US-FL: CRC Press.

 ■ “Gene regulatory network.” https://en.wikipedia.org/wiki/Gene_
regulatory_network.

 ■ ICTT. 2007. “Improving Design Review” V1.4.1. ICTT System
Sciences.

 ■ INCOSE PBSE Working Group. 2015. “Pattern-Based Systems
Engineering (PBSE), Based On S*MBSE Models.” http://www.
omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns_chal-
lenge_team_mtg_0 6.16.15.

ABOUT THE AUTHOR
[Editor: Author biography was current when the paper was
initially published in 2015.]

William D. (Bill) Schindel is president of ICTT System
Sciences. His engineering career began in mil/aero systems with
IBM Federal Systems, included faculty service at Rose-Hulman
Institute of Technology, and founding of three systems enterprises.
Bill co-led a 2013 project on the science of systems of innovation
in the INCOSE System Science Working Group. He co-leads the
patterns challenge team of the OMG/INCOSE MBSE initiative,
and is a member of the lead team of the INCOSE agile systems
engineering life cycle discovery project.

Author1 and Author2 continued from page 24

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

33

INTRODUCTION: OVERVIEW AND BACKGROUND
Problem Statement

 ABSTRACT
This paper summarizes how a well-understood problem—optimal control and estimation in “noisy” environments—provides
a framework to advance understanding of a well-known but less well-mastered problem—system innovation life cycles and
management of decision risks and learning. The ISO15288 process framework and its exposition in the INCOSE Systems Engineering
Handbook (2015) describe system development and other life cycle processes. Concerns about improving the performance of
processes in dynamic, uncertain, and changing environments are partly addressed by “agile” systems engineering approaches.
Both are typically described in the procedural language of business processes, so it is not always clear whether the different
approaches are fundamentally at odds, or just different sides of the same coin. Describing the target system, its environment,
and the life cycle management processes using models of dynamical systems allows us to apply earlier technical tools, such as the
theory of optimal control in noisy environments, to emerging innovation methods.

Innovation, Risk, Agility,
and Learning, Viewed
as Optimal Control and
Estimation

William D. (Bill) Schindel, schindel@ictt.com
Copyright © 2017 by William D. Schindel. Published and used by INCOSE with permission.

[Editor: This paper for systems engineering foundations refers to the Systems Engineering Handbook 4th edition (Copyright 2015 by the
International Council on Systems Engineering), ISO 15288:2015, and the Systems Engineering Vision 2020 published by INCOSE in
2007.]

Advancing understanding and
performance of the system
innovation life cycle is central to
INCOSE. Current understanding

is exemplified by the Systems Engineering
Handbook, ISO15288, and Guide to the
SE Body of Knowledge (Walden et al.
2015, ISO 15288:2015, and Pyster et al.
2013), describing established principles
and practices grown pragmatically out of
decades of real-world experience. This is
a different kind of foundation than STEM
understanding of the phenomena of
electrical, mechanical, or chemical systems
as the basis for electrical, mechanical, and
chemical engineering disciplines. Complex
engineered systems and environments,

systems of systems, compressed innovation
cycles, and dynamically changing compet-
itive markets and technologies challenge
understanding and capabilities to perform
system innovation effectively enough. The
traditional principles might still apply, but
how do we know whether we are per-
forming the overall process as effectively
as possible? We understand the possibil-
ities and limits on efficiency of engines
from thermodynamics, but how do we
understand the possibilities and limits on
innovation cycles? This paper suggests that
certain existing STEM-based foundations
are available, enabled by the transition to
model-based systems engineering (MBSE),
that can be exploited in pursuit of optimiz-

ing innovation cycles, and as a foundation
for understanding currently emerging
methods.

The Geometrization of Innovation Space
Converting physical and mathematical

descriptions into “spatial” geometric terms,
while seemingly abstract, has a long history
of positive impacts in the history of science,
technology, engineering, and mathematics
(STEM). This paper introduces the same
kind of thinking into how we understand
the process of innovation in general as
a system, and particularly in more chal-
lenging cases involving highly dynamic
environments, continuous learning, and
uncertainties in our ability to fully observe

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

34

or control what is occurring during the
innovation process. Even where current
practices may be seen in this approach,
it provides a more general way to under-
stand them, and therefore to perform and
improve them in the future.

Before introducing this alternate per-
spective, this paper will briefly summarize
some of the traditional as well as emerging
perspectives across seemingly different do-
mains. Then, the impact of shifting to more
model-based representation of systems on
our ability use the ideas of mathematical
spaces will be described. Following that, the
paper will describe the spaces of interest
in this case, and how they are addressed
by the existing theory of optimal control
and estimation. An immediate application
is noted in the world of agile, “continuous,
and “fail fast and recover early” develop-
ment, and other applications are briefly
summarized, with additional application
suggestions for future pursuit.

Innovation, Risk, and Agility: Traditional
and Emerging Concerns

This section briefly summarizes some of
the more prominent risk-connected aspects
of traditional and emerging perspectives
on system innovation and related life cycle
management. For purposes of this discus-
sion, we will consider innovation to mean
the delivery of improved stakeholder value,
through any aspects of the system life cycle
management processes. This is an explicit
formalism, because the approach explicitly
models value across all stakeholders (Kline
et al. 2017, Simoni et al. 2016, and Rogers
2003). It avoids a technology-centric view,
without ducking the challenge of com-
plexity. It also creates an explicit space for
improved understanding of variation and
selection.

Concerns of Traditional Approaches
to Innovation. The traditional systems en-
gineering view of these life cycle processes
can be described by the ISO15288 standard
(ISO 2015) or its further description in the
INCOSE Systems Engineering Handbook
(Walden et al. 2015). Within that perspec-
tive, a number of differently configured
specific forms of the development portion
of these life cycles may apply, based on
the metaphors of waterfall, spiral, waves,
or otherwise. Additional portions of the
traditional ISO 15288 life cycle processes
include production, distribution, opera-
tion, maintenance, update, and retirement,
any of which may be subject to innovation
delivering enhanced stakeholder value.

The risk management perspective in the
traditional case would include concerns
such as multiple types and sources of risk,
among these limited knowledge of chang-
ing environment, stakeholder situations

and needs, as well as technical and other
risks to performance, costs, and schedule.
Traditional risk management concerns in-
clude identifying risks, assessing them, and
working to avoid, transfer, mitigate, and
monitor those risks (Walden et al. 2015).
More attention is recently paid to risks
arising when systems of interest or their
environments exhibit dynamical complexi-
ty (Sheard et al. 2016).

Concerns of Emerging Approaches to
Innovation. New approaches to innovation
are rapidly emerging and are sometimes
perceived (correctly or not) as at odds with
systems engineering, at least as tradition-
ally performed. In the agile and lean start
up communities (for systems, software,
products, business, etc.), risk is addressed
by seeking early and continuing feedback
through short or incremental “experiments”
(whether called “sprints” or otherwise) that
encourage discovery, exposure, or explo-
ration of instances of risk early enough
that they can be addressed while the cost
of doing so is still relatively smaller, even if
this causes change to what would other-
wise have been fundamental assumptions.
Examples can be seen in the methodologies
of agile software and systems (Rigby et al.
2016, Dove and LaBarge 2014), lean start
up, the minimum viable product, pivoting
(Ries 2011), and experimentation in general
(Schrage 2014, Anderson et al. 2011, Clarke
2016, Kohavi et al. 2009, Manzi 2012, Teller
2016, and Thomke 2003).

How System Models Can Shift Our
Perspective on Innovation

INCOSE has recognized the importance
of the continuing rise of model-based
methods (Friedenthal et al. 2015), and
formalized an objective of supporting sys-
tems engineering becoming a model-based
discipline (Peterson et al. 2017). We note
that this emergence is still at a relatively
early and progressing stage — what is cur-
rently referred to as a “system model” may
not represent what is possible in the future.
This larger shift can include moving from
system engineering’s traditionally pro-
cess- and procedure-oriented emphasis to
something closer to the system model em-
phasis of other STEM disciplines (Schindel
2016), without abandoning the discipline
of process.

Mathematically oriented models have
a long history in design optimization,
(Fisher 1971, Bellman 1957, Koch 1998,
Pontryagin et al. 1962, Smaling 2005, and
Box 2013), predating more recent use of
system (MBSE) models for other purposes
(Friedenthal et al. 2015). However, the
scope of such design optimization mathe-
matical models was generally focused on
key architectural or other specific, import-

ant, but limited scope decisions, not the
overall system being innovated, and not a
dynamical model of the overall process of
innovation.

In contrast to but building on that
history, our interest in this paper is the
convergence of (1) the earlier design
optimization models (cited above) with (2)
wider-scope, system-level MBSE models
having strengthened STEM foundations
(cited above), (3) more powerful compu-
tational environments (Friedenthal et al.
2015), (4) continuous incremental develop-
ment methodologies (cited above), and (5)
extension of the system models to include
both the target system of interest and the
development and other life cycle manage-
ment environments as systems in their own
right (Schindel and Dove 2016).

The traditional issues summarized in the
earlier sections above are fundamental and
not likely to disappear through technique
or method. However, the rise of system
models as tools for innovation can have
similar effects to their historical emergence
in the other scientific and engineering
disciplines — increasingly powerful ways
to understand and attack those traditional
issues, with increased clarity, quantification,
and qualitative understanding.

WHERE DO SYSTEMS COME FROM? SYSTEM
LIFE CYCLE TRAJECTORIES IN S*SPACE
SE Information versus SE Process

The systems engineering process is often
conceptualized by systems engineers using
the life cycle management process models
of ISO 15288 and the INCOSE Systems
Engineering Handbook, exemplified by the
systems engineering “vee” model (Forsberg
et al. 2000), in one form or another, such as
illustrated by the upper portion of Figure 1.

As also illustrated in Figure 1, the systems
engineering process consumes and produces
information, along with other kinds of
resources. The perspective of this paper
assumes an INCOSE-visualized future of
model-represented information, represent-
ing system configurations progressing over
the system life cycle. Because this paper
emphasizes the impact of system models,
Figure 1 uses symbology from the S*Meta-
model summary framework (INCOSE Pat-
terns Working Group 2015) to illustrate the
iterative production and consumption of
information within the systems engineer-
ing process. The S*Metamodel framework
represents the smallest set of information
sufficient for the purposes of science and
engineering in model form including: a sig-
nificant range of stakeholder value/fitness
space and purpose, technical requirements,
design architecture, quantitative couplings
and sensitivities, and failure modes and
impacts.

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

35

designed a power supply before?)
4. More subjectivity and interpretation

are required in reviews than would be
preferred.

5. Arguments about whether systems
engineering has its foundation, like
the other engineering disciplines,
in underlying phenomena, physical
laws, and first principles.

Geometrization of Systems Engineering
Model Information Space

By “geometrization,” we refer to the use
of spatial coordinate system frameworks
to represent state (in this case, the
configuration of a modeled system), and
with that transformation the availability
of certain important formal mathematical
tools coupled with intuitive spatial
references. A familiar framework of this
sort is a three-dimensional representation
of space above a small region of the surface
of the earth, used to represent the ballistic
trajectory of a projectile fired from and
returning to the earth. Other geometrized
representations describe more abstract
ideas in more familiar looking 3-space, or
higher numbers of dimensions.

Two very famous geometrizations oc-
curred in the history of mathematics, both
having profound practical impacts on the
day-to-day tools of modern engineering,
noted in Figure 2.

1. The geometrization of algebra, by
Rene Descartes, associated with
graphs of conic sections or other
shapes generated by algebraic
formulae (Boyer 1959).

2. The geometrization of function

De�nes
Target System
Con�guration

Space

Information Passing Through Processes Above

(S*Metamodel Summary)

Feature

Functional
Role

Design
Component

Technical
Requirement

Statement

Design: Top System

Design: Subsystem 3
Design: Subsystem 2

Design: Subsystem 1

Realization: Subsystem 3
Realization: Subsystem 2

Realization: Subsystem 1

Realization: Top System

Component Level
Design, Acquisition,

Fabrication

Organizational
Project-Enabling

Processes

Agreement
Processes

Technical Processes

Project Processes

(Adapted from ISO/IEC 15288:2015)
Architecture
Definition

System of Innovation (SOI) Processes

De�nes
Innovation

Process
Space

Solution
Validation

Implementation

Life Cycle Management
Process (Iterative)

Information Passing
Through Life Cycle

Processes

Figure 1. The systems engineering process produces and consumes information

Traditional systems engineering has
historically emphasized process and pro-
cedure over the information those pro-
cesses consume and produce. As evidence
(Walden et al. 2015, Schindel 2015, and
INCOSE MBSE Patterns Working Group
2015) of this relative emphasis, one may
refer to the amount of ink and paper spent
to describe expected process and procedure
versus to describe the expected information
consumed and produced. The referenced
industry and enterprise process standards
certainly refer to both process as well as
information, but the rise of model-based
methods is shifting the relative balance of
these two back in the direction of informa-
tion models. It is informative to compare
this to the history of physical science-based
engineering disciplines (ME, CE, ChE,
EE, etc.), in which there is relatively more
emphasis on the models of underlying phe-
nomena and system models, and relatively

less emphasis on the “procedure for per-
forming electrical engineering”. As noted
in (Schindel 2005, 2015, 2016), historical
impacts of this situation have included:

1. Difficulty determining when we are
“done” performing systems engi-
neering, measuring where we are in
process and procedure space (top
of Figure 1) instead of where things
stand in modeled target system con-
figuration space (bottom of Figure 1).

2. In the same way, more subjectivity
than would be desired in describing
what comes next, by referring to
procedural steps (procedure space)
instead of modeled target system
configuration space progress.

3. Ambiguity in what the procedure-ori-
ented approach says we should do
with what we already know from past
projects, versus what we are finding
out for the first time. (Have we ever

z
Cartesian Coordinates

Rene Descartes
1596 –1650

c

P(a,b,c)

b

a

y

x
Geometrization of Algebra,
by Rene Descartes

Figure 2. Two geometrizations had
enormous impact: Descartes and Hilbert

David Hilbert
1862 –1943

Vector Spaces

Normed Spaces

Hilbert
Spaces

Geometrization of Function
Space, by David Hilbert

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

36

spaces, by David Hilbert, associ-
ated with function inner products
and distance metrics, correlations,
angular direction, frequency domain
transformations and projections, etc.
(Simmons, 2003).

The practical effect of these become
available when we begin to describe inno-
vated systems using models, if the models
are based on a strong enough metamodel
foundation:

A. Viewing the configuration of system
information (whether about stake-
holder value and system fitness, or
technical requirements, or design
architecture, or failure modes, or sen-
sitivities and couplings, or otherwise)
as a point in system configuration
space.

B. Visualizing “where we are” in an in-
novation process as a (moving) point
in that system configuration space,
representing the current understand-
ing of the system of interest—instead
which step of a procedure we have
completed. We begin to think in
system configuration space instead
of process and procedures pace. (See
Figure 1.)

C. Visualizing “where we are going” as
points we want to reach in system
configuration space, instead of steps
in process and procedure space.

D. Taking advantage of the mathe-
matical concepts and tools that go
with such spaces, including distance
metrics, velocities, inner products,
projections, and other tools.

E. Visualizing the progression of points
in system configuration space as a
trajectory, along which we want to
move during innovation in an opti-
mal way toward a goal.

F. Realizing that this has converted the

problem of innovation into one of
optimal dynamical travel along an
(agile) trajectory, in the presence of
uncertainty.

Nothing about the above should be
interpreted as suggesting that innovation
is a simple deterministic process (quite the
opposite—many random processes are in-
volved), or that we can predict its outcomes
(also not so), fail to use the deep lessons
learned by experienced leaders in tradi-
tional environments (rather, we want to
share them more widely), or that we are not
including serendipity or creativity (think
about models of biological innovation or
earthquakes). Rather, we are suggesting
that, as with other applications of science
and engineering, we are seeking STEM
models of the world we occupy, to improve
our ability to learn and succeed within it.

Trajectory Projections in S*Subspaces
The full S*Configuration space set of

information modeled across the engineer-
ing process and system life cycle has much
higher dimension than three-space, and in-
volves a mixture of dissimilar ideas, such as

stakeholder value, material properties, laws
of physics, etc. That may suggest putting all
this into an integrated configuration space
is too daunting a task.

However, a powerful aspect of geome-
trization is the idea of subspaces, in which
some dimensions are temporarily ignored
and a smaller number of current interests
are visualized. This idea is illustrated by
Figure 3, in which a trajectory in 3-space is
projected onto three different sub-spaces,
each of two dimensions.

In the same way, subsets of the S*Con-
figuration space may be separately studied,
for a system that has projections into many
subspaces. Figure 4 shows three such sub-
spaces of interest, each of which represents
potential creative or discovered syntheses:

1. Stakeholder feature subspace: A
discovered or learned synthesis of
stakeholder types and their respec-
tive value or fitness space, against
which systems will be judged. The
place where the value of delivered
innovation is ultimately realized and
validated.

2. Technical behavior subspace: A

attribute

attribute attribute

attribute

attributeattribute

WB

BB (logical system)

(physical system)

Stakeholder
World

Language

Technical
World

Language

High Level
Requirements

Detail Level
Requirements

High Level
Design

attribute
attribute

attribute
attribute

attribute
attribute

attribute

attribute

attribute attributeattribute

attribute
attribute

attribute
attribute

attribute
attribute

attribute
attribute

attribute
attribute

attribute
attribute

attribute

attribute attribute

attribute
attribute

attribute attribute

attribute
attribute

attribute
attribute

attribute
attribute

attribute
attribute

attribute
attribute

attribute

attribute

attribute

attribute

attribute attribute

Stakeholder Feature Subspace Sub–
subspaces

Continuous
Subspace

Discrete
Subspace

Sub–
subspaces

Technical Behavior Subspace

Physical Architecture Subspace

System Configuration
Space (S*Space)

Feature

Functional
Role

Design
Component

“A” Coupling

Z

Z

Y

X

X–Z
Subspace

Y–Z
Subspace

X–Y
Subspace

X–Y–Z
Space

X

Y

Z

Y

X

Figure 3: Projections onto subspaces

Figure 4: Stakeholder feature subspace; technical behavior subspace; design subspace

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

37

discovered or learned concept of
operations and its related black box
technical specification. The place
where a technical behavior appears
as a potential way to deliver value in
(item 1 just above), and where a can-
didate’s design performance is judged
technically.

3. Physical architecture subspace: A
discovered or learned design solution,
including physical architecture, the
technologies upon which it is con-
structed, and the means of delivering
the technical performance called for
in (item 2 just above).

This is not to suggest that projection onto
subspaces is something new: model views,
reducing dimensions, applying principal
component analysis, and the like are famil-
iar enough in engineering. Rather, what we
are pointing out is that MBSE is nearing the
point at which the whole system innovation
problem — not just a part of it — can be cast
in this framework. At this point, the “guid-
ance system” discussed in the next section
becomes a practicality, as follows.

A system’s configurations, during the
innovation cycle, can now be conceived
as moving along a trajectory in each of
those individual subspaces, representing
projections onto each of them, from the
combined trajectory in the total space. We
can consider paths that are more or less
desirable, think about velocity along the
path, ideas of uncertainty about location,
development response time, agility, and
other important issues. The idea of optimal-
ity of trajectory now becomes more clearly
related to innovation over life cycles. This
optimality may have to do with minimizing
transit time, response or recovery time,
resources expended along the trajectory,
and uncertainty as to position or other
feedback.

The scope of S*Configuration space thus
includes not just issues of technical require-
ments and design, but also identity of stake-
holders and models of stakeholder value.
This means that innovation opportunity is
a part of this space, and the innovation pro-
cess includes discovery of opportunity and
purpose, not just design. We are reminded
that this trajectory includes discovery and
learning about all three of the subspaces
in Figure 4, and others, bearing on current
interest in emergence or discovery of pur-
pose, and “pivoting” (Reis 2011).

This nearly brings us to the point of hav-
ing transformed the view of innovation to
a view of optimal trajectory guidance in a
noisy environment, but we still need to add
the guidance system, as well as arrange-
ments for learning.

The Guidance System: Including the System
of Innovation in the Model

Based on the above, we now have the tar-
get system, subject to innovation, represent-
ed by a model, having a configuration to be
guided along an innovation trajectory path
in system configuration Space. The “guid-
ance system” for that trajectory becomes the
life cycle management systems of ISO 15288,
including systems engineering and other
processes. We are still very interested in that
ISO 15288 process set, which has great com-
munity-learned reference value, but we can
also view it in a new light, as follows.

The traditional “vee diagram” view of
the ISO15288 model (upper part of Figure
1) focuses on key interdependencies of the
life cycle management processes, arising
from the nature of developed systems, and
with an emphasis on the management of
those processes. What we will see below
emphasizes different aspects of the same
processes — the discovery, learning, and use
of learning aspects, and how they relate to
the very same ISO15288 processes. It is a
different emphasis on the traditional pro-
cesses — not an abandonment of them.

A reference model is shown in Figure 5,
the agile systems engineering life cycle
management (ASELCM) pattern, in use by
the INCOSE ASELCM discovery project
(Schindel and Dove 2016). It includes three
major subsystems:

1. System 1: Target system of inter-
est, to be engineered or improved.
(The system modeled in the earlier
sections above, whose configuration
trajectory is to be guided.)

2. System 2: The environment of (inter-
acting with) System 1, including not
only its operational environment, but
also all the life cycle management sys-
tems of System 1, including learning
about System 1 and its environment.

3. System 3: The life cycle management
systems for System 2, including
learning about Systems 2 and its
environment.

Note that System 2 is further divided
into:

A. Learning and knowledge manager
for target system: Discovers and
accumulates new and existing knowl-
edge about System 1 and its operating
environment.

B. Life cycle manager for target
system: Uses what has already been
learned (in A above) about System 1,
performing all the necessary life cycle
management processes.

The same sort of sub-division occurs
for System 3 but concerned with discovery
and learning about System 2 and its envi-
ronment, and managing its life cycle. So,
System 3 includes all process improvement
for System 2.

The ASELCM pattern of Figure 5 shows
observation and feedback loops. This
pattern models I nnovation itself, not just
the innovated thing—and is non-linear,
iterated, and exploratory as to configura-
tion space. It is a complex adaptive system
reference model for system innovation,
adaptation, operation/use/metabolism,
sustainment, and retirement or replace-
ment. It applies to 100% human-performed
or automation-aided innovation, or hybrids
thereof, whether performed with agility
or not, ISO 15288 oriented or informal,
and whether performed well or poorly. It
includes representation of pro-active, an-
ticipatory systems. The rise of a number of
newer innovation methods and emphases,
in business and technical systems, supports
the need for such a combined reference
model:

1. Agile engineering of systems and
software (Dove and Labarge 2014,
Rigby et al. 2016)

2. Product line engineering of compos-
able, configurable systems (INCOSE
PLE WG 2015)

3. Experiment-based innovation
(Schrage 2014, Anderson et al. 2011,
Manzi 2012)

3. System of Innnovation (SOI)

(Substantially all the ISO15288 processes are included in all four Manager roles)

1. Target System

Target
Environment

2. Target System (and Component) Life Cycle Domain SystemLearning & Knowledge
Manager for LC Managers

of Target System

Learning & Knowledge
Manager for Target Systems

Life Cycle Manager
of LC Managers

LC Manager of
Target System

Figure 5. The ASELCM pattern: top level reference boundaries

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

38

4. Fail fast and recover early (Dove et
al. 2016)

5. Lean business start up, the minimum
viable product, and pivoting (Ries
2011).

Effective Learning: More than “Lessons
Learned” Reports

The emerging innovation methods cited
above particularly emphasize learning,
whether it is discoveries about stakehold-
ers and their value space, the evolving
environment, competitive alternatives,
system concept of operations and technical
requirements, designs and technological
characterization, or failure modes and
design limits. As methodologies couched
in agility, experiment, pivot, or fail fast
and recover early, the hallmark of these
methods is admission that a changing or
uncertain world creates risks and opportu-
nities in the form of incomplete knowledge.
Of course, this has always been true, at least
to some degree, in the world of innovation,
traditional or otherwise—but the newer
methods particularly emphasize means
of accelerating the related discovery and
learning process, managing related risks.

Accordingly, strategies for learning are
of particular importance (Christensen et
al. 2011, Schindel et al. 2011). This learning
amounts to filling in more knowledge in
the models of the configuration spaces
described above. Because these spaces
are usually very large, with many degrees
of freedom and parametric ranges, and
because exploration, experimentation, and
learning require expending time and other
resources, the strategy for picking what to
learn about, what to invest experiment and
learning resources in, becomes important.
The concept of configuration space and
trajectories through it can help us see this
exploration as “flying through” the space in
designated “search patterns”. Interest in op-
timal strategies (that is, trajectories, routes)
for exploration of this space becomes a
natural extension of the theory of design of
experiments (Fisher 1971), and has become
the subject of a significant literature on
experiment, in its own right (Schrage 2014,
Anderson et al. 2011, Clarke 2016, Kohavi
et al. 2009, Manzi 2012, Teller 2016, and
Thomke 2003).

For the systems engineering process,
there are a number of learning-related
implications:

1. How is continuous, incremen-
tal learning represented? In the
approach described above, what is
already known about System 1 is rep-
resented by the smallest model suffi-
cient for purposes of engineering or
science. It follows that what is learned
in the future about System 1 would be

represented as (incremental) changes
to that model.

2. Learning must be compressed
and placed “in the way” of future
performance: For learning to be
effective, it must impact future
behavior. Just “storing” what is
learned is not the objective, which
is improved future performance
about what was learned. So, what
was learned must be effectively
incorporated in future performance.
While the internal means of this are
somewhat masked by biology for
individual humans, when it comes to
teams and enterprises, we must ask
how learning is to improve future
performance of the group. We suggest
that it is not effective to accumulate
ever-growing sets of “lessons
learned reports”, even if searchable
as databases. The INCOSE MBSE
Patterns Working Group describes
S*Patterns as the configurable,
re-usable models of whole target

systems (INCOSE Patterns Working
Group 2015). These are subsequently
configured as the starting point of
future performance, so that whatever
has flowed into the patterns becomes
a (configurable, as needed) part of
future performance. Think of “muscle
memory” in humans.

3. Learning in each ISO 15288
process: Figure 6 shows that the
ISO 15288 life cycle management
processes appear twice in System
2 and twice in System 3. Two of
those appearances are learning
processes — they are the learning
aspect of each of the (already
defined) ISO 15288 processes. They
are about learning new things about
the subject of those processes —
whether they are about stakeholder
or technical needs, designs,
verifications, or otherwise. Every
ISO 105288 process potentially has
a learning aspect. But each of them
also has a “non-learning” execution

3. System of Innnovation (SOI)

(Substantially all the ISO15288 processes are included in all four Manager roles)

1. Target System

Target
Environment

2. Target System (and Component) Life Cycle Domain SystemLearning & Knowledge
Manager for LC Managers

of Target System

Learning & Knowledge
Manager for Target Systems

Life Cycle Manager
of LC Managers

LC Manager of
Target System

Design: Top System

Design: Subsystem 3
Design: Subsystem 2

Design: Subsystem 1

Realization: Subsystem 3
Realization: Subsystem 2

Realization: Subsystem 1

Realization: Top System

Component Level
Design, Acquisition,

Fabrication

Organizational
Project-Enabling

Processes

Agreement
Processes

Technical Processes

Project Processes

(Adapted from ISO/IEC 15288:2015)
Architecture
Definition

System of Innovation (SOI) Processes

Solution
Validation

Implementation

Learn Learn
Execute Execute

Figure 6. The systems engineering “vee” appears four times in the ASELCM pattern

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

39

only aspect, in which what has already been learned is
applied. It is not the case that engineering a system requires
learning. In the case of product line engineering (PLE) for
configurable platforms, there are rapid-execution versions of
each of the ISO 15288 processes that essentially “configure”
what is already defined in the platform pattern, for a specific
case. The platform and its supporting patterns represent
what was learned in the past—what we already know.

4. What about what we already know? The traditional
description of the systems engineering process actually
describes all the things we would do if we knew nothing
in advance about a system or its domain. But what about
what we already know, which is usually quite a lot? Very
little of the traditional life cycle process description
addresses that question, nor how it would be blended with
new learning processes. So, splitting up processes into
the learning – execution pairs of Figure 5 have the further
advantage of explicating this important aspect, essential to
agility.

5. Learning about System 2: These same points, concerning
System 2’s learning about System 1, will also apply to System
3’s learning about System 2.

WHAT OPTIMAL CONTROL AND ESTIMATION THEORY CAN TELL US
It is hard to overstate the transformative successes and spread,

during the last fifty years, of the theory of optimal estimation, with
related technologies for extracting signals from noisy environ-
ments, and the theory of optimal control, with applications of
feedback control systems. Among the key modern contributors to
these underpinnings have been Norbert Wiener (time series, fire
control systems, feedback control, cybernetics), Rudolph Kalman
(filtering theory, optimal Bayesian estimation), Lev Pontryagin
(optimal control, maximum principle), and Richard Bellman (dy-
namic programming). Applications spread from defense fire con-
trol systems, through multi-sensor navigation systems, to control
strategies implemented in manufacturing, transportation, energy,
communication, medical, entertainment, scientific instrumenta-
tion, and other domains. Without these accomplishments, much of
modern life would disappear or shift to much less favorable human
experience of a century or more earlier (Wiener 1949; Kalman
1960; Pontryagin et al. 1962; Bellman 1957, 1959; Bryson 1967;
Bryson and Ho 1975).

These successes have been powered by mathematical
models of the related (engineered) systems of interest and
their environments. These include their equations of motion
(state) and model elements representing measurement, control,
uncertainty, risk, and feedback. The accumulation of progress
in the capabilities of related models and technologies stands in
contrast to the progress of the less formal theories and practice
of human organizations, business and management, including
the process and procedure of systems engineering in particular,
or human-performed innovation in general. While these latter
human activities have clearly progressed in very important
ways, they have been supported by less formal descriptions,
subjective judgement, and human intuition—all of these powerful
but something different than the above-referenced theory and
applications of optimal control and estimation. A reasonable and
expected first reaction would be that they simply do not apply
in a concrete way, because it has simply not been clear how to
practically apply those tools to complex problems such as the
management of development processes. So, the latter have been
described by informal prose, including prominent examples such
as the INCOSE Systems Engineering Handbook and the ISO 15288
life cycle management standard.

Is It Plausible To Apply Optimal Control to the Innovation
Process?

As the underlying approaches to model-based representations
of systems are progressing, we may ask whether this progress is
yet sufficient to help us to apply the more powerful mathematical
frameworks to the domain of innovation itself. Is it plausible that
optimal control and estimation might have practical application
to the innovation process itself? And, if it is, why has this not
occurred on a widespread basis already?

We first review the nature of these technical frameworks, as they
have succeeded in their contemporary application domains, then
ask whether and how they apply to innovation itself.

Optimal estimation theory is based on models of estimation,
from noisy (corrupted) observations or measurements, of the
current state of an (also modeled) system, which may itself also be
driven by random processes. This framework addresses the ques-
tion of how to optimize those estimates, as to their uncertainty.
Optimal control theory begins with models of a system’s equations
of motion, including the model of its environment and drivers,
adds models of control inputs, and asks how to optimize those
control inputs so as to optimize various objective functions, such
as trajectory, elapsed response time, frequency response, expendi-
ture of fuel, energy, or other resources, proximity to moving targets
or set points, or other more complex objective functions. The
deterministic theory is then extended by adding random processes
to both system environmental drivers as well as noise-corrupted
observation processes. Optimal control objectives are then extend-
ed to include uncertainty.

So, how well does the innovation process itself sound like it
might fit what the theory of optimal control and estimation ad-
dresses? Table 1 (on the next page) compares the application of the
theory, applied to a guidance system, to the same theory, applied to
a system of innovation. How are the seemingly different concepts
of Table 1’s middle and right columns in fact similar? The answer
is that they play the common roles listed in Table 1’s left column.
This is similar to the idea that a control system embedded in an
automobile and embedded in a manufacturing system still depend
upon the same theoretical foundations from controls theory.

The inspiration of vehicle trajectory control as a trajectory
metaphor for travel through innovation state space is further
supported by the vehicle work of (King et al. 2016 and Martinovich
1988). The typical formulation of the Table 1 left column concepts,
independent of domain, is in the next section.

Risk-Optimal Control and Estimation: Typical Problem
Frameworks

Mathematical frameworks of optimal estimation, prediction,
and control problems, including deterministic and stochastic,
linear and non-linear, continuous and discrete time, as well as
combinatorial, have been the subject of extensive attention for de-
cades, resulting in many feedback-based applications in estimation
and control. While not every class of problem is covered by these
advances, their range of successes is formidable.

For comparison to Table 1, a typical time continuous problem
statement framework (discrete forms also available) is as follows
(Levi 2014, Bryson and Ho 1967):

System defined by: = f (X, U) + W, having system state X(t) Є Rn,
with control U(t), driven by process W(t); allowing observations
Y = h(X) + V, Y Є Rn having observation corruption by random
process V(t).

Find an optimal control U(t) minimizing expected objective
functional: and describe the means of
quantifying uncertainty based on model and observation.0

g (X(t), U(t)) dt ,

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

40

In linear, or linearized, cases and for
discrete time cases, Figure 7 illustrates the
form of a representative feedback system,
adapted from Bryson and Ho (1967), where
the coefficients shown are generated from
system specifications or learning about
the random processes from observation
(Schindel 1972); other aspects quantify how

uncertainty propagates.
The framework and Figure 7 are

suggestive, not meant to establish the
specific form for the innovation problem
summarized in Table 1. However, the
annotations added to Figure 7 are practical
reminders, even in the most non-linear,
manual human-performed control, of more

fundamental aspects of management and
estimation in uncertain environments,
concerning:

1. Use of knowledge of managed system
dynamics to predict future state
(“dead reckoning” based on beliefs
about prior state and system behav-
ior)

2. Use of observational data to correct
what was otherwise believed

3. Relative weighting of (1) versus (2)
4. Steering to desired trajectory goals

based on current estimated state,
goal, and beliefs about system re-
sponse dynamics

5. Exploration to improve knowledge/
beliefs of system structure, dynamics,
stochastics.

Just as these ideas are important in any
manually human-managed innovation, so
they can also be important in applying opti-
mal estimation and control to innovation.

Table 1. Informal comparison of two domains, as a plausibility test

Aspect of Common
Theoretical Framework

Application to a Vehicle Guidance
System Application to a System of Innovation

Overall domain system Propelled airborne vehicle
guidance to moving airborne target

Development of new system configuration for a
system of interest

The controlled system Airborne Pursuit Vehicle The development process

Control system Flight control system and pilot
sometimes

Development management & decision-making
process

Other actors Target, atmosphere Stakeholders, operating environment of system of
interest, suppliers

State space in which
controlled performance
occurs

Vehicle position in 3-D geometric
space

Configuration space of system of interest, including
its features, technical requirements, and physical
architecture

Driving processes Target dynamics, pursuit thrust,
flight control surface movements Stakeholder interest, supply chain

Random aspects of
driving processes Buffeting winds Stakeholder preferences, competition, technologies

Observation process
model

Radar tracking of moving target,
sensor characterization

Status reporting, market feedback, development
status report process

Random disturbances of
observation processes Sensor errors Inaccuracies or unknowables in development

status; sampling errors

Environmental
Conditions

Target maneuvers; atmospheric
effects Market or other environmental conditions;

Control input Flight control surface orientation Management direction; resources

Objective function to
optimize Time to target

Time to market; Competitive Response
Time; Innovated System Performance; Innovation
Risk vs. Reward

Dynamical model Ballistic Flight, Atmospheric
Effects, Thrust Coupled development processes

Outcome risk Risk of missing airborne target Risk of innovation outcomes across stakeholders

+— ++ ++

Managed
System &

Environment

Controller/Estimator

ui

Ki

ri

Unit
Delay

Pre-Observation Predicted Future State
(Dead Reckoning)
System

Dynamics

Optimal
Control
Generation

Estimated
Previous State

Error
Correction

Observation
Weighting

Observations Signal

Generated Controls

Predicted
Impact of
Control

Φi

-Hi

-Ci

zi xi+1
xi

Figure 7. Form of typical optimal stochastic estimator/controller, in linearized
discrete time form (adapted from Bryson and Ho 1967 and Schindel 1972)

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

41

Agility as Risk-Optimized Control of
Trajectory in S*Space

Learning trajectories versus mission
trajectories. In a dynamic and uncer-
tain environment, the above can help us
understand how to plan trajectories that are
optimal with respect to two different goals:

1. Mission response to environ-
ment: Adjusting course (system
configuration) in a responsive way, to
perform the base mission, or to im-
prove ability to perform the mission.
This form of agility exploits what
is already known (expressed in the
model), based on basic mission and
the current or projected operational
environment.

2. Exploration for learning: This
goal is concerned with exploring to
capture additional information to
improve understanding about (the
model of) the system of interest or
its environment, and possibly in the
presence of random process corrup-
tion of observations as well as ran-
dom processes driving the systems.

(Simkins et al. 2008) illustrates optimal
control in a mixed exploitation-exploration
approach.

Support for experiment selection in
“fail fast and recover early” risk strate-
gy. When dealing with “moon shot” or
less familiar areas (for example, early stage
technologies, early stage market concepts),
concerns of later stage “too late” discovery
of infeasibility, financial, or stakeholder
issues is significant. The literature on “fail
fast and recover early” innovation suggests
the strategy of addressing the apparent
highest risk issues earliest, to eliminate as
soon as possible what turn out to be infeasi-
ble choices (Teller 2016). This is a much
different strategy than the WSJF (weight-
ed shortest job first) strategy sometimes
applied in agile systems engineering to pick
next increments (Reinertsen 2009).

Gradient-based versus exploratory
direction. Given a current location in
S*Space, the principle of optimality (Pon-
tryagin et al. 1962) describes the direction
of the optimal trajectory from that point,
assuming reachability from that point. If

reachability is not assured, then “fail fast”
experiments such as in the above approach
are suggested.

Intermediate gain delivery trajectories.
Even in the case of starting toward a known
reachable point, though, agile principles
suggest that the trajectory needs to deliver
intermediate progress along its route to a
destination. That is, intermediate points
along the trajectory need to be sought out
as intermediate “agile” deliverable configu-
rations that offer incremental improvement
in their own right, if the objectives require.

Innovation in Populations: Markets,
Segments, Ecosystems

This approach can also be extended
beyond trajectories of a single system, by
considering populations of systems. In
market or ecological frameworks, systems
of different configurations of multiply
instantiated (populated) instances interact
with other systems in roles acting as preda-
tors, prey, commercial or military compet-
itors, customers, suppliers, infrastructure,
or others.

The global configuration of the entire
ecosystem is a point in a higher-dimension
configuration state space, and the entire
ecosystem is moving along an evolutionary
/ innovation trajectory. This problem is
important to understanding markets and
ecosystems and includes not only issues
of development of new system types, but
also rates of production and distribution
across global supply networks, as a part of
the overall innovation model. The diffusion
of system types (species, product types,
technologies) across the population may
be studied in this way. The population
perspective has been studied at length in
diffusion of technology (Rogers 2003) and
proliferation and limits of biological species
populations (MacArthur and Wilson 1967).

CONCLUSIONS AND FUTURE STEPS
1. Theories of optimal control and optimal

estimation are based in state space and
become more applicable to innovation
strategy when explicit system models
are used to express system configura-
tion.

2. Geometrization of formal spaces,
already a source of major insights in the

history of STEM, when applied to the
innovation domain brings insight and
understanding to planning and execut-
ing system innovation.

3. Heuristic practices for innovation
strategy, agility, risk management, and
learning may be enhanced by the use
of mathematical system models of life
cycle trajectories over innovation cycles.

4. For learning to be effective, the prod-
ucts of learning must be built into the
roles that will perform future tasks to
be informed by that learning—“lessons
learned” filed in reports or searchable
databases are not really learned in an
effective sense.

5. Use of models does not replace human
judgment but enhances it in much the
same way that STEM has advanced oth-
er human-managed activities, adding
science and math-based foundations to
previously intuitive practices.

6. Quantitative understanding of agile,
fail-fast and recover early, lean, and ex-
periment-based innovation methods is
enhanced by viewing these through the
lens of trajectory in configuration space.
Implications for future pursuit include:

7. How automated engineering tooling can
be enabled to assist innovation teams
by improving their decision-making
around selection of activities;

8. Further exploitation of the historical
work of (Pontryagin et al. 1962; Bellman
1957, 1959; and Kalman 1960);

9. Extension of the mathematical theory
by moving to populations, applicable to
markets and other ecologies;

10. Incorporation of model verification,
validation, and uncertainty quantifica-
tion (VVUQ), and related application of
learned system patterns (PBSE);

11. Enhanced visualization of product life
cycle trajectories;

12. Simulation of innovation as a dynamical
system.

ACKNOWLEDGEMENTS
The INCOSE ASELCM discovery

project, led by Rick Dove, has provided
valued motivation for a stronger theory of
systems of innovation in the presence of
uncertainty and change.

REFERENCES
 ■ Anderson, Eric T. and Duncan Simester. 2011, “A Step-by-Step

Guide to Smart Business Experiments.” Harvard Business
Review, March. https://hbr.org/2011/03/a-step-by-step-guide-to-
smart-business-experiments .

 ■ Bellman, R. E. 1957. Dynamic Programming. Princeton, US-NJ:
Princeton University Press.

 ■ Bellman, R. E, and R. E. Kalaba. 1959. “Dynamic Programming
and Feedback Control.” RAND Corp.

 ■ Box, George E. P. 2013. An Accidental Statistician. New York,
US-NY: Wiley.

 ■ Boyer, C. B. 1959. “Descartes and the Geometrization of
Algebra.” The American Mathematical. Monthly 66 (5):
390–393.

 ■ Bryson, A. E., Jr. 1967. “Applications of Optimal Control
Theory in Aerospace Engineering” Journal of Spacecraft and
Rockets 4 (5): 545-553.

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

42

 ■ Martinovich, V. 1988. “Quantifying Aircraft Agility Using
Minimum-Time Maneuvers.” MS Thesis, Iowa State University
(Ames, US-IA).

 ■ Peterson, T., J. Fuchs, and W. Schindel. 2017. “Model-Based
Transformation: Planning and Assessment Instrument.”
INCOSE Corporate Advisory Board Report, INCOSE Annual
Workshop, Torrance, US-CA. 28-31 January.

 ■ Pontryagin, L. S., V. G. Boltyanskii, R. V. Gamkrelidze, and
E. F. Mishchenko. 1962. The Mathematical Theory of Optimal
Processes. English transl. New York, US-NY: Interscience.

 ■ Pyster, A. and D. H. Olwell, eds. 2013. The Guide to the
Systems Engineering Body of Knowledge (SEBoK) v. 1.1.2.
Hoboken, US-NJ: The Trustees of the Stevens Institute of Tech-
nology. www.sebokwiki.org/.

 ■ Reinertsen, D. 2009. Principles of Product Development Flow:
Second Generation Lean Product Development. Redondo
Beach, US-CA: Celeritas Publishing.

 ■ Ries, Eric. 2011. The Lean Startup: How Today’s Entrepreneurs
Use Continuous Innovation to Create Radically Successful Busi-
nesses. New York, US-NY: Crown Business.

 ■ Rigby, D., J. Sutherland, and H. Takeuchi. 2016. “The Secret
History of Agile Innovation.” Harvard Business Review 20
April.

 ■ Rogers, Everett. 2003. Diffusion of Innovations Fifth Edition.
New York, US-NY: Free Press.

 ■ Schindel, W. 1972. “Linear Estimation: The Kalman-Bucy Fil-
ter.” MS Thesis, Rose-Hulman Institute of Technology (Terre
Haute, US-IN). http://scholar.rose-hulman.edu/math_grad_the-
ses/1/ .

 ■ Schindel, W. 2005. “Requirements Statements Are Transfer
Functions: An Insight from Model-Based Systems Engineering.”
Paper presented at the 15th Annual International Symposium
of INCOSE, Rochester, US-NY, 13-16 June.

 ■ Schindel, W. 2015. “System Life Cycle Trajectories: Tracking
Innovation Paths Using System DNA.” Paper presented at the
25th Annual International Symposium of INCOSE, Seattle,
US-WA, 13-16 July.

 ■ Schindel, W. 2016. “Got Phenomena? Science-Based Disci-
plines for Emerging System Challenges.” Paper presented at
the 26th Annual International Symposium of INCOSE, Edin-
burgh, GB-SCT, 18-21 July.

 ■ Schindel, W., and R. Dove. 2016. “Introduction to the Agile
Systems Engineering Life Cycle MBSE Pattern.” Paper present-
ed at the 26th Annual International Symposium of INCOSE,
Edinburgh, GB-SCT, 18-21 July.

 ■ Schindel, W., S. Peffers, J. Hanson, J, Ahmed, and W. Kline.
2011. “All Innovation is Innovation of Systems: An Integrated
3-D Model of Innovation Competencies,” in Proc. of Ameri-
can Society for Engineering Education Annual Conference and
Exposition, Vancouver, BC, 26-29 June.

 ■ Schrage, M. 2014. The Innovator’s Hypothesis: How Cheap
Experiments Are Worth More Than Good Ideas. Cambridge,
US-MA: MIT Press.

 ■ Sheard, S., S. Cook, E. Honour, D. Hybertson, J. Krupa, J.
McEver, D. McKinney, P. Ondrus, A. Ryan, R. Scheurer, J.
Singer, J. Sparber, and B. White. 2016. “A Complexity Primer
for

 ■ Systems Engineers.” INCOSE Complex Systems Working
Group, downloaded March 24,

 ■ 2017, from https://incose.ps.membersuite.com/onlinestorefront/
BrowseMerchandise.aspx .

 ■ Simkins, A., R. de Callafon, and W. Todorov. 2008. “Optimal
Trade-off Between Exploration and Exploitation.” Proc. of the
American Control Conference, Seattle US-WA, 11-13 June.

 ■ Bryson, A. and Y. Ho. 1967. “Lecture Notes on Optimization,
Estimation, and Control.” Harvard University Division of
Engineering and Applied Physics, Cambridge, US-MA.

 ■ Bryson, Arthur, and Yu-Chi Ho. 1975. Applied Optimal Con-
trol: Optimization, Estimation, and Control, New York-US:
Taylor & Francis.

 ■ Christensen, C., C. Dyer, and H. Gregersen. 2011. The Innova-
tors DNA: Mastering the Five Skills of Disruptive Innovators,
Boston, US-MA: Harvard Business Review Press.

 ■ Clarke, Ben. 2016. “Why These Tech Companies Keep Running
Thousands of Failed Experiments.” Fast Company, 26 Septem-
ber.

 ■ Dove, R., and R. LaBarge. 2014. “Fundamentals of Agile
Systems Engineering—Part 1” and “Part 2.” Papers presented
at the 24th Annual International Symposium of INCOSE, Las
Vegas, US-NV, 30 June – 3 July.

 ■ Dove, R., et al, 2016, Proceedings of the INCOSE 2016 Socorro
Systems Summit. http://www.incose.org/ChaptersGroups/Chap-
ters/ChapterSites/enchantment/library-and-resources/socor-
ro-systems-summit—2016-oct-28-29/proceedings .

 ■ Fisher, Ronald. 1971. The Design of Experiments Ninth Edition.
New York, US-NY: Macmillan.

 ■ Forsberg, Kevin, Hal Mooz, and Howard Cotterman. 2000.
Visualizing Project Management: A Model for Business and
Technical Success. New York, US-NY: John Wiley and Sons.

 ■ Friedenthal, S., et al. 2015. “A World In Motion: Systems Engi-
neering Vision 2025.” San Diego, US-CA: INCOSE.

 ■ INCOSE MBSE Patterns Working Group. 2015. “Pattern-Based
Systems Engineering (PBSE), Based On S*MBSE Models.”
http://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:pat-
terns_challenge_team_mtg_06.16.15 .

 ■ INCOSE Product Line Engineering Working Group. 2015.
 ■ http://www.incose.org/ChaptersGroups/WorkingGroups/analytic/

product-lines
 ■ ISO/IEC/IEEE 15288. 2015. Systems Engineering—System Life

Cycle Processes. Geneva, CH: International Organization for
Standardization.

 ■ Kalman, Rudolf. 1960. “A New Approach to Linear Filtering
and Prediction Problems.” Transactions of the ASME, Journal
of Basic Engineering 82:34–45.

 ■ King, Jeffrey, and Mark Karpenko. 2016, “Estimation of Op-
timal Control Benefits Using the Agility Envelope Concept.”
Advances in the Astronautical Sciences Spaceflight Mechanics
Vol 155.

 ■ Kline, W., A. Bernal, M. Simoni, and W. Schindel. 2017. “De-
velopment of Enhanced Value, Feature, and Stakeholder Views
for a Model-Based Design Approach.” To appear in Proc. of the
2017 American Society of Engineering Education, Columbus,
US-OH.

 ■ Koch, Richard. 1998. The 80/20 Principle: the Secret of Achiev-
ing More with Less. New York, US-NY: Currency Books,
Doubleday.

 ■ Kohavi, R., T. Crook, R. Longbotham, B. Frasca, R. Henne, R.
Ferres, and T. Melamed. 2009. “Online Experimentation at
Microsoft.” http://www.exp-platform.com/documents/expthink-
week2009public.pdf .

 ■ Levi, Mark. 2014. Classical Mechanics with Calculus of Vari-
ations and Optimal Control. New York, US-NY: American
Mathematical Association.

 ■ MacArthur, Robert H., and Edward O. Wilson. 1967. The
Theory of Island Biogeography. Princeton, US-NJ: Princeton
University Press.

 ■ Manzi, James. 2012. Uncontrolled: The Surprising Payoff of
Trial-and-Error for Business, Politics, and Society. New York,
US-NY: Basic Books. > continued on page 52

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

43

INTRODUCTION AND BACKGROUND: SIZE MATTERS!

 ABSTRACT
How we represent systems is fundamental to the history of mathematics, science, and engineering. Model-based engineering
methods shift the nature of representation of systems from historical prose forms to explicit data structures more directly
comparable to those of science and mathematics. However, using models does not guarantee simpler representation—indeed a
typical fear voiced about models is that they may be too complex.
 Minimality of system representations is of both theoretical and practical interest. The mathematical and scientific interest is
that the size of a system’s “minimal representation” is one definition of its complexity. The practical engineering interest is that the
size and redundancy of engineering specifications challenge the effectiveness of systems engineering processes. INCOSE thought
leaders have asked how systems work can be made 10:1 simpler to attract a 10:1 larger global community of practitioners. And so,
we ask: What is the smallest model of a system?

What Is the Smallest
Model of a System?

William D. Schindel, schindel@ictt.com
Copyright © 2011 by William D. Schindel. Published and used by INCOSE with permission.

[Editor:This paper for systems engineering foundations refers to the Systems Engineering Handbook 3rd edition (Copyright 2010 by the
International Council on Systems Engineering), ISO 15288:2002, and the Systems Engineering Vision 2020 published by INCOSE in
2007.]

Representation size, purpose, tra-
ditions. This paper discusses pos-
sible (and potentially least) upper
bounds on the sizes of effective

representations of systems, for the purposes
of systems engineering. Compared to tradi-
tional systems engineering approaches, it
draws more directly on scientific traditions
for representing behavior as physical inter-
action. Systems engineering is still young,
and its connections to supporting sciences
is still evolving rapidly.

Language and compression. This
subject may appear to be related to the
language used to describe systems, and
an interesting thread in the mathematical
study of description length is whether
minimality is in a sense independent of
language (Chaitin 2005, Grunwald, Li and
Vitany 1997). In any case, systems mod-
eling languages such as SysML® and its
predecessors provide valuable assets for
the movement to model-based methods
(SysML Partners). Our subject here is not

the machinery of these specific modeling
languages, but the systems ideas that min-
imal models must address. When used for
system families (product lines, ensembles),
the representation described here is subject
to significant compression by the use of
patterns. This turns out to provide pow-
erful insights about approaches to major
practical reductions in the size of systems
engineering descriptions and processes,
and about ongoing future evolution of do-
main languages over time. These dynamics
also suggest that such patterns can be un-
derstood as emergent when the interaction
rules of the systems engineering process are
properly arranged.

Practical representation challenges
of traditional systems engineering.
Traditional system documentation of
concept of operations (CONOPS), system
requirements, design specifications,
failure mode and effects analysis (FMEA),
test plans, operations and maintenance
procedures, and other task-specific system

representations over the life cycle of a
system can exceed thousands of pages. This
does not encourage the engagement of a
10:1 larger global community of systems
practitioners. Systems engineers may argue
that system risks justify these extensive
descriptions, but the effectiveness of these
representations may be questioned in
light of the following typical experiences:
A requirements document, read by
three systems engineers, produces three
interpretations of its meaning — quite a
different experience from three electrical
engineers interpreting a properly
constructed electrical schematic diagram.
Whereas the discovery of an ambiguity
in a schematic “blueprint” is considered
exceptional (or even machine-checkable
in some cases) ambiguities in “system”
requirements documents are commonplace
and frequently tolerated as the state of the
systems art. Determining completeness and
consistency of (or otherwise interpreting)
a specification document is frequently a

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

44

highly subjective assignment, requiring
very experienced human reviewers. Model-
based representations are a hoped-for way
to address this challenge, but it is not yet
obvious whether these are sufficient for an
order-of-magnitude positive benefit to the
overall systems process.

Systems engineering process versus
systems engineering data. This paper’s
perspective will shift between the systems
engineering process (a system in itself),
versus information about the target
system (which flows through the systems
engineering process system), and how the
two are related. The systems engineering
process is frequently described (ANSI/EIA-
632-1998, ISO/IEC 15288 2002, Haskins
2010), but the system representations it
produces and consumes (our main subject
here) remain a key challenge. We argue that
the target systems information is the more
fundamental issue to solve, after which
the resulting implications for the systems
engineereing process can be addressed in a
new light.

Complexity science. Complexity, a
seemingly intuitive idea, has become the
subject of formalization and study, includ-
ing both the natural and human-engineered
world. Initial efforts sought a theoretical
basis for expressing complexity measures
or otherwise understanding complexity,
including the size of minimum system
descriptions (Li and Vitany 1997, Chaiten
2005, Kauffman 2000). They have more
recently turned to the practical implications
of emergent complexity science for engi-
neering processes (Bar-Yam 2003b, 2005,
Braha et al. 2006, Kuras and White 2005,
Schindel 1996). Some efforts have studied
minimal information required to describe a

system, as a measure of its complexity. Oth-
ers have introduced “complex systems engi-
neering” (CSE) terminology in connection
with understanding engineering problems
or classifying systems, in situations such as
highly interconnected systems (networks),
adaptive systems, systems embedding hu-
mans, issues of scale and scope, ideas about
types of emergence, or engineering project
failures (Braha et al. 2006, Bar-Yam 2003b).
Some studies have focused from the outset
on the problems of human engineering or
other organic intentional processes in con-
nection with complex engineered systems
(Ashby 1957, INCOSE HSIG). There is a
growing awareness of connections between
systems engineering and systems science.
INCOSE formed the System Science
Enabling Group, and later the Systems
Science Working Group (INCOSE SSWG),
in recognition of the connection between
systems science and systems engineering.

System patterns. Ideas of “patterns” have
a number of connected roots in science
and engineering. Pattern recognition and
classification have a mathematical theory
and engineering practices (Duda 2001).
Patterns in engineered systems were
recognized in building architecture, later
inspiring software engineers, and more re-
cently systems engineers (Alexander 1977,
Gamma et al. 1995, Haskins 2005, Cloutier
and Verma 2007, Schindel 2005b). Initially
expressed using traditional engineering
structures (for example, prose templates),
patterns were later combined with mod-
el-based systems engineering (MBSE) to
lead to pattern-based systems engineering
(PBSE) (Schindel and Smith 2002, Schindel
2005b).

CONSTRUCTING EFFECTIVE AND EFFICIENT
REPRESENTATIONS

Using models. Model-based repre-
sentations have a traditional engineering
role in verifying that designs will satisfy
requirements, or otherwise representing
system behavior (Karayanakis 1993). More
recently, model-based representations have
been used to represent system require-
ments (Mellor 2002, INCOSE MBSE,
Schindel 2005a, SysML Partners, Estafan).
In the earlier and more established design
verification case, “model” frequently refers
to mathematical descriptions of system
physical make-up, often modeling from
first principles to create mathematical de-
scriptions that can be analyzed or simulat-
ed. In the more recent system requirements
case, “model” extends this idea to describe
desired functional behavior.

In both cases, the term “model” means
a formal (according to agreed upon rules),
explicit (core content not implicitly de-
pending on other assumed knowledge),
and unambiguous (not subject to multiple
interpretations) description. As shown in
Figure 1, there are three components in
a model-based engineering setting: The
model, the system modeled, and the model
interpreter(s). We want the model to be
interpreted with desired process outcomes
(for example, easy, consistent, and unam-
biguous interpretation, optimality of de-
sign, etc.). Global efforts (ISO 10303 AP233
and Mellor 2002) are working toward the
exchange and interpretation of model data
by machines and people, for purposes of
simulation, procurement, fabrication, code
generation, etc.

The “third role” (model interpreter) in
Figure 1 has vital significance here. The
effectiveness of a model means how well it
serves the purposes of the model inter-
preter. If we expect to engage a 10:1 larger
community of systems practitioners, and
make the systems process 10:1 easier, then
we must learn how to make the model in-
terpreter’s tasks easier and more appealing,
and for a much larger global population. If
we only develop automated approaches to
deluge the human model interpreter with
information, we won’t have the outcome
needed.

A metamodel. A metamodel is a model
of other models — a framework or plan
governing the models that it describes. We
utilize the S*Metamodel (summarized by
Figure 2), a relational/object information
model used in the Systematica™ methodol-
ogy to describe requirements, designs, and
other (verification, failure analysis, etc.)
information in S*Models. These may be
represented in SysML®, database tables, or
other languages. We have applied these to
systems engineering in mil/aero, transpor-

describes
Model

AP233

(Machine Interpreters) (Human Interpreters)

Modeled Thing

Modeled Interpreter

Figure 1. The setting for model-based systems engineering

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

45

tation, communication, medical and health
care, consumer products, construction,
manufacturing, and as a framework for ed-
ucating new engineers (Gunyon et al. 2010;
Bradley et al. 2010; Schindel and Smith
2002; Schindel 2002, 2005b; and Ahmed et
al. 2011).

S*Models describe the external
(black box) behavior of target systems
twice — once in the subjective (stakeholder)
language of stakeholder-valued behavior,
and again as more objectively-described
technical behaviors.

Stakeholders features. S*Models repre-
sent system stakeholder features as explicit
objects. For example, some of the features
of an oil filter are represented in Figure 3:

than, but also no more than, the feature
model. (This is based upon the practice
of including all significant stakeholders
and their features in the feature model.)
If we find a compelling argument for why
technology X or architecture Y is the right
(or wrong) choice, the reason why can only
be to better accommodate the stakeholder
features — trade space is exclusively
“scored” in the metrics of these features. A
common mistake is to defend choices in
technical trade-off spaces that are short of
the actual stakeholder feature space.

Suppose further that we are perform-
ing an FMEA. It turns out that the only
“effects” (the E part) that can appear in an
FMEA are failures to deliver on the promise
of a stakeholder feature. As soon as we
know the feature space of system, before a
design has been synthesized, we can already
fill out the “effects” column of the FMEA
analysis (Schindel 2010). However, it is not
universal practice to align or audit FMEA
and stakeholder feature models.

Feature space is integrated with technical
requirements space by the negotiation of
the features-interactions relationships — to
begin with, a two-column table negotiated
jointly by representatives of the stakehold-
ers and the technical community. Feature
space is typically of lower dimension
than the more technical spaces of system
requirements or design. This means that
once we have constructed an integrated
feature-interactions-roles-requirements
model (traced by Figure 2), we can “config-
ure” (automatically populate) good starting
point draft requirements configurations:
populating lower dimension features can
“automatically” populate higher dimension
requirements through the constraints of the
model.

We have repeatedly seen the use of fea-

ture models dramatically improve align-
ment and facilitate constructive discussion
of cross-functional teams. For example, a
powerful use of feature space is to express
impact assessments on the introduction of
new technologies into operations envi-
ronments, or to express system long range
or facility master plans first in terms of
features (stakeholder capabilities) planned
and only second in terms of the equipment,
technologies, or projects that will imple-
ment them. Likewise, risk to stakeholders
(whether financial risk, schedule risk,
technical risk, or otherwise) is represented
by features.

All this suggests that feature models are
often under-utilized in the rush to technical
requirements. Note that feature models are
formal even though they are in the (sub-
jective) language of stakeholders. There is a
difference between informally stated stake-
holder “needs” (in the original voice of the
customer) and formally translated (but still
stakeholder language and concept) features.
A quick pass through “stakeholder needs”
on the way to technical requirements is less
than the minimal Features model we are
suggesting here.

Feature space is an interesting place. It is
the gateway to other communities beyond
our engineering organizations, and for that
reason may be seen as a strange or unfamil-
iar language and environment. But it rep-
resents improved connection to those who
pay the bills, buy the products, or whose
lives depend on the engineered system.
Bridging this cultural gap may be challeng-
ing but is the reason that S*Models are dual
rooted in both of the “two cultures” (C.P.
Snow, S. J. Gould). When INCOSE thought
leaders advocate that we look for ways to
engage order-of-magnitude larger segments
of the global community in systems work,
modeled feature space, in model views
appropriate to the viewers, are a related
enabler.

Interactions. S*Models represent
physical interactions as explicit objects at
the very core of systems engineering. For
example, Figure 4 shows interaction objects
for an oil filter— these summarize the
physical interactions of an oil filter with its
environment, over its life cycle.

Interaction models exist at two levels of
detail. The high-level interaction model
simply consists of the name and definition
of the interaction, a list of the parties that
participate (play roles) in the interaction,
and the major attributes of the interaction.
These named interactions also appear
within the system’s state model, and that
combination very compactly expresses the
overall modeling of the system’s behavior
with its environment, over its life cycle.
The detail level interaction model includes

Feature

State

Input/
Output

System

System of
AccessInterface

Functional
Role

Design
Component

Functional
Interaction

(Interaction)

Requirement
Statement

attribute

Stakeholder

attribute

attribute

attribute

“A” Matrix
Couplings

“B” Matrix
Couplings

(logical system)

(physical system)

Stakeholder
World

Language

Technical
World

Language

High Level
Requirements

Detail Level
Requirements

High Level
Design

Figure 2. A summary view of the S*Metamodel

Mechanical
Compatibility

Feature

Engine
Lubricant
Filtration
Feature

Reliability
Feature

Additive
Feature

Cost of
Operations

Feature

Environmentally
Friendly
Feature

Figure 3. Features of an oil filter

We could simply claim that a minimal
model of an engineered system must
include a (feature) model of all the things
valued by all the system’s stakeholders.
However, there is more to this than
meets the eye. Features have a way of
creeping into many different engineering
conversations and artifacts, not always
recognized for their redundancy. Note that
every design decision, every trade-off, every
value engineering or project argument
should ultimately depend upon no less

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

46

an interaction diagram (of which there
are many specific forms in SysML or other
modeling languages) for each interaction,
showing the input-outputs exchanged
between the interacting actors, and
including the requirements statements that
describe the roles in the form of “nonlinear
transfer function” relationships between the
inputs and outputs (Schindel 2005). Refer
to Figure 5.

or more components playing logical roles.
The “emergent” properties of the interac-
tion are associated with the whole, not any
single component. Behaviors of individual
components are described by requirements
statements as input-output characteristics
of their roles (Schindel 2005a). Notice the
difference in perspective of Figure 6.

By now it is well-known that simple
behaviors by individual components (or
“agents”, in the popular parlance), when
they interact with each other, may lead to
“emergence” of surprisingly more complex
behavior by the combined system (for
example, the three body problem, cellular
automata, swarms, traffic, etc.). The differ-
ence between the simple “rules” (behavior
of the actors) and the more complex emer-
gent system behavior is nothing more and
nothing less than the difference between
describing a functional role in an interac-
tion and the interaction as a whole — it is a
difference of night and day.

We have repeatedly observed a profound
practical difference between systems engi-
neering modeling interactions as illustrated
by Figures 5 and 6, versus modeling of
SIPOC required behavior as in Figure 6. We
have seen this difference have major practi-
cal impact in numerous systems engineer-
ing projects, in which the modeler either
did or did not model the whole interaction,
including “what the operator did” (Schindel
2006), “what the material did” (Schindel

2011), or other actor behaviors.
Minimality of representation. The

S*Metamodel arose over time from the
research question, “What is the smallest
amount of information required to describe
system level requirements and design?”,
combined with practice application. We
won’t reproduce here the formal argument
for minimality of S*Models — interested
readers may contact the author. However, a
summary of that argument is:

 ■ The sufficiency of S*Models of
requirements and designs is argued,
with respect to intended use of the
information. Here the uses of systems
engineering information enter, including
considerations of risk and opportunity.

 ■ The minimality of S*Models is estab-
lished by showing that no metaclass
(see Figure 2) of information in an
S*Model is redundant with information
in another metaclass, and showing that
omission of any component results in
loss of sufficiency — including classes
versus instances.

This argument makes use of a mapping
of which S*Model components (grouped
across the top of Table 1) are needed for the
different SE process areas (summarize by
the Table 1 rows).

This table can be constructed for the
various systems enginering process areas
of ISO15288 or the INCOSE Systems

Figure 4. Interactions of an oil filter

Transport
Packaged
Product

Pre-Process
Disposed
Product

Recycle
Disposed
Product

Destroy
Disposed
Product

Decompose
Disposed
Product

Recycle
Disposed
Product

Destroy
Disposed
Product

Decompose
Disposed
Product

Identity
Packaged
Product

Display
Packaged
Product

Purchase
Packaged
Product

Store
Packaged
Product Filter

Lubricant

Prevent
Lubricant
Leakage

Transmit
Shock

& Vibration

Install Filter

Remove Filter

Store
Disposed
Product

Stakeholder Feature

State

Input/
Output

System

System of
AccessInterface

Functional
Role

Design
Component

Functional
Interaction

(Interaction)

Technical
Requirement

Statement

Design/
Constraint
Statement

attribute

Stakeholder
Requirement

Statement
attribute attribute

attribute

attributeattribute

WB

BB

“A” Matrix
Couplings

“B” Matrix
Couplings

(logical system)

(physical system)

Stakeholder
World

Language

Technical
World

Language

High Level
Requirements

Detail Level
Requirements

High Level
Design

Compression
Force

Compression
Force

Compression
Force

Compression
Force

Heat
Energy

Heat
Energy

Heat
Energy

Filter Media Adhesive End Cap

Compression
Source

Heat
Energy

Figure 5. Interaction diagram

Interaction models go to the heart of
what we mean by “system” in the engi-
neering and scientific world and expresses
ideas of emergence. By “system,” we mean
a collection of interacting components. By
“interact,” we mean that one component
impacts the state of another component. By
“state,” we mean a property of a component
that impacts its current or future behavior.
By “behavior”, we mean a component’s
interactions with other components. This
is the intentionally circular, relational per-
spective of the trained scientist, engineer,
or mathematician that has helped describe
the natural world since Newton. In this per-
spective, an interaction is holistic, with two

Figure 6. Two different starting points: systems as interacting components versus a
SIPOC perspective

System

System

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

47

Engineering Handbook. However, later in
this paper we will also discuss an alternate
way to view systems engineering process
areas. (Why would we want to do that? The
answer depends on whether we expect a
much larger global population to become
traditional systems engineers and take
up the traditional systems engineering
processes.)

The above minimality argument is
“constructive”: Rather than arguing that a
minimal model exists, we actually con-
struct it—not the case in most algorithmic
information theory. However, this argument
does not assert uniqueness: There may be
other models no larger that also represent
the same system.

MODEL VIEW; USEFUL REDUNDANCY.
A familiar challenge is that different

“systems engineering documents” may be
inconsistent with (contradict) each other:
This is because they contain redundant
information. As documents evolve, that
consistency must be maintained to be
consistent across the documents. Refer

to Figure 7. This issue also occurs within
single documents (self-consistency). There
are good (task-oriented) reasons why these
documents should be redundant—but not
why they should be inconsistent.

This is one reason why database tools are
powerful in systems engineering. Properly
used, they can generate different “views”
(documents, etc.) from the common
underlying data model, thereby improving
their consistency (see Figure 8).

The S*Model goes farther, by pointing
out redundancies not always recognized;
for example,

 ■ FMEA functional failures vs.
requirements (counter-requirements)
(Schindel 2010)

 ■ FMEA failure effects vs. stakeholder
features (noted earlier above)

 ■ ICDs vs. system requirements
 ■ CONOPS and use cases vs. system
requirements, features.

Table 1. Systems engineering process areas vs. metamodel information areas

Systems Engineering
Area Grp1 Grp 2 Grp 3 Grp 4 Grp 5

HLR X

DLR/BB X X

DLR/WB X X

HLD X X X

FMEA X X X X

TST X X X X X

Concept of
Operations
(CONOPS)

Requirements
Document

Interface
Control

Document (ICD)

Operations &
Maintenance

SOP

Figure 7. Redundant documents—consistent or inconsistent?

Figure 8. Generation of (redundant) views from a non-redundant database

Stakeholder Feature

State

Input/
Output

System

System of
AccessInterface

Functional
Role

Design
Component

Functional
Interaction

(Interaction)

Technical
Requirement

Statement

Design/
Constraint
Statement

attribute

Stakeholder
Requirement

Statement
attribute attribute

attribute

attributeattribute

WB

BB

“A” Matrix
Couplings

“B” Matrix
Couplings

(logical system)

(physical system)

Stakeholder
World

Language

Technical
World

Language

High Level
Requirements

Detail Level
Requirements

High Level
Design

Major Conceptual Model Views

Underlying system level information base:
Consistent data and relationships, based on Systematical Metamodel

Feature
Framework

Domain Model

Detail
Requirements

State Model

Physical Design
Architecture &

Allocations

Stakeholder
Requirements

Summary
Documents

High Level
Requirements

(HLR)
Documents

High Level
Design (HLR)
Documents

Bill of
Materials

(BOM)

Interface
Control

Document
(ICD)

Failure Modes
and Effects

Analysis
(FMEA)

Detail Level
Requirements

(DLR)
Documents

Logical
Architecture

(Functional)
Interactions
Framework

(Interactions with external actors)

High Level Requirements (HLR) Typical Document Views

Standard Specialized or Enterprise-Specific Document Views

Detail Level Requirements (HLR) High Level Design (HLD)

View-Specific Query

View-Specific
Query

View-Specific Query

View-Specific Query

Vi
ew

-S
pe

cif
ic

Qu
er

y

Vi
ew

-S
pe

cif
ic

Qu
er

y

Vi
ew

-S
pe

cif
ic

Qu
er

y

Vi
ew

-S
pe

cif
ic

Qu
er

y

Vi
ew

-S
pe

cif
ic

Qu
er

y

Vi
ew

-S
pe

cif
ic

Qu
er

y

Vi
ew

-S
pe

cif
ic

Qu
er

y

Vi
ew

-S
pe

cif
ic

Qu
er

y

Vi
ew

-S
pe

cif
ic

Qu
er

y

Vi
ew

-S
pe

cif
ic

Qu
er

y

(Situation-based use cases
as states, linked by state

transitions)

(Functional Roles with
allocated Requirements

Statements)

(System behaviors having
stakeholder value)

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

48

Such “redundancies” are really deep in-
sights that make model construction easier
and reinforcing: We can still produce all
these views, but with less effort and greater
consistency.

Measures of model complexity. Models
communicate information, as quantified in
communication theory (Shannon 1963).
More recently, complexity of objects has
been quantified in algorithmic information
theory (AIT or Kolmogorov complexity)
using the “smallest program” capable of
constructing the object or its behavior (Li
and Vitany 1997, Chaiten 2005). The mini-
mality of S*Models (measured in bits) also
have several practical sides:

 ■ Clarifying “too small” versus “big
enough” models: The S*Metamodel re-
minds us of types of systems engineer-
ing information that, if omitted, will
leave us with an incomplete description
of a subject system’s requirements,
design, or connecting relationships. A
practical example is the use of states
in a requirements model, reminding
us that for any requirement statement,
“when does this requirement apply?” is
a fair (and often not explicitly an-
swered) question. We may omit this
information for pragmatic reasons,
but are reminded of what we have not
communicated.

 ■ Reducing redundancy and associated
inconsistency: Although documents
or other task-oriented views generated
from an S*Model may be redundant,

the information in an S*Model is not.
The consistency of a large number of
redundant derived documents and
views is easier to maintain or check
against a single minimal model.

So, how big? How does an S*Model-based
compare in size to a traditional systems
engineering prose-based description? A
practical discovery is that a typical S*Model
of technical requirements is more complete
than a corresponding traditional technical
requirements document. Being more
complete, it is bigger, not smaller! Figure 9
illustrates some typical sizes. Keep in mind
the original question was: What information
is essential?

USING PATTERNS TO COMPRESS MODELS
The “starting from scratch” systems

engineering process delusion. One of the
most significant causes of perceived com-
plexity of the systems engineering process is
the fact that most descriptions of the process
seem to (implicitly) involve an assumption
(judging from the steps they describe) that
is nearly always false for real projects — that
the project is “starting from scratch” in a
“clean sheet” engineering project on a system
for which there are no significant historical
precedents. Accordingly, the process system-
atically seeks out the needed information
and processes it into a form usable by the
project (ISO/IEC 15288, INCOSE Systems
Engineering Handbook).

Figure 10. Families of systems—whether generations or product lines

Figure 9. Typical sizes for models and traditional systems engineering documents

Manufacturing
Process

Manufacturing
Facility

Medical
Device

0.1

1

10

Over-the-
Road Vehicle

Requirements Representation Size (Bits x 106)

S* ModelTraditional
Document

System Type

Lawnmower
System

Walk-
Behind
Mower

Self-
Propelled

Mower

Model M3
Push

Mower

Model M5
Self-Propelled

Mower

Model M11
Wide Cut Self

Propelled Mower

Model M17
Rear Engine

Rider

Model M19
Lawn

Tractor

Model M23
Garden
Tractor

Model M100
Auto Mower

Rear
Engine
Rider

Autonomous
Mower
System

Riding
Mower

Push
Mower Tractor

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

49

On the contrary, real projects are
most often concerned with engineering
similar (but different) systems across
different product generations, applications,
configurations, or market segments. At
the very least, we are typically engineering
whiz-bang product X as the latest
improvement in a long line of previous
products in the same domain — but
with some new differences, big or small.
In some cases, we are even planning a
product line of related products as a whole
(see Figure 10).

In spite of this reality, very little of the
descriptions of the systems engineering
process is typically about more efficiently
leveraging what we already know about the
target systems. Typically, these descriptions
make some mention of consulting
documents or lessons learned about
similar projects, but very rarely is there a
procedural discipline focused specifically on
engineering of what we could call “variable
sameness.” Something more than a database
of useful past requirements or cloning the
last project document from the engineer’s
desk drawer (a dominant paradigm)
is suggested here — an equivalent to
perturbation theory in mathematics.

Pattern-based systems engineering
(PBSE). Over several decades, we have
developed and practiced what we call
pattern-based systems engineering (PBSE)
across a range of domains, including carrier
grade telecommunications, engines and
power systems, automotive and off road
heavy equipment, telecommunications,
military and aerospace, medical devices,
pharmaceutical manufacturing, consumer
products, and advanced manufacturing
systems (Schindel and Smith 2002, Schin-
del 2005b, Bradley et al. 2010). Engineers
in all of these and many other domains
spend most of their company’s engineering
resources developing or supporting systems
that virtually always include major content
from repeating system paradigms at the
heart of their business (for example, core
ideas about airplanes, engines, switching

systems, etc.). In spite of this, the main
paradigm apparent in most enterprises to
leverage “what we know” is to build and
maintain a staff of experienced technolo-
gists, designers, application engineers, or
other human repositories of knowledge.
There is typically little evidence of a “Max-
well’s Equations” of first principle-based
discipline of “variable sameness” in the
engineering of these systems.

Although engineering “patterns” already
have precedent in systems and software
engineering (Gamma 1995, Alexander
1977, Haskins, 2005, Cloutier and Verma
2007), these are often relatively informal
approaches to capturing and re-applying
certain general ideas, supporting by tem-
plates of one sort or another. By contrast, in
PBSE what we are doing is to extend MBSE
through the use of formally configurable
and re-usable systems engineering models.
Specifically, an S*Pattern is a re-usable,
configurable S*Model of a family (product
line, set, ensemble) of systems.

Pattern configurations. Such patterns
are ready to be configured to serve as
models of individual systems in projects.
“Configured” here is specifically limited to
mean that pattern model components are
populated /de-populated, and that pattern
model attribute (parameter) values are
set—both based on configuration rules that
are part of the Pattern. Patterns are based
on the same metamodel as “ordinary”
models.

Because of this disciplined approach
to “configuration” as a limited case
of specialization, relatively dramatic
simplifications can frequently occur in
the typical engineering process. A table
of configurations illustrates how patterns
facilitate compression. The rows of the
table represent aspects of the model
such as stakeholder features and their
attributes, functional roles, requirements
attributes, design components, interfaces,
etc. (See Table 2).

A different way to organize systems
engineering processes: PBSE offers us a

different (and potentially simpler) way to
view the organization of the systems engi-
neering process areas. Instead of dividing,
them by their ISO 15288 type functionality
first, we can divide them into two major
processes (see Figure 11):

 ■ Pattern management process: Generates
the underlying family model, and peri-
odically updates it based on application
project discovery and learning.

 ■ Pattern configuration process: Config-
ures the pattern into a specific model
for application in a project.

The second of these two processes may
well contain what could be viewed as out-
come equivalents to the ISO 15288 process
areas, but they can be viewed in a much
different light if they are first each asking
how to produce their products from what
is already known (the patterns that govern
the target system – not the engineering
process). Much of the more complex formal
machinery of systems engineering can
then be “hidden” in the other process — the
pattern management process, in which a
much smaller number of people’s efforts
are leveraged by a larger population in the
second process. In this approach, patterns
become valued IP, and are sometimes even
financially capitalized as a form of “soft-
ware.”

As a start toward “thermodynamics of
patterns”, the Gestalt Rules (Schindel 1997)
describe what it means for a holistic system
model to either conform to or not conform
to a more general holistic system model.
For example, if we develop state models of
aircraft over mission profiles that include
preparation, take-off, climb, cruise, combat,
return, landing, etc., then how can we com-
pare fixed-wing, helicopter, VTOL, civil,
and other aircraft?

Compression of models, using pat-
terns. Each column in the table is a com-
pressed system representation with respect
to (“modulo”) the pattern. The compression
is typically very large. The compression
ratio tells us how much of the pattern is

Stakeholder Feature

State

Input/
Output

System

System of
AccessInterface

Functional
Role

Design
Component

Functional
Interaction

(Interaction)

Technical
Requirement

Statement

Design
Constraint
Statement

attribute

Stakeholder
Requirement

Statement
attribute attribute

attribute

attributeattribute

WB

WB
BB

BB

“A” Matrix
Couplings

“B” Matrix
Couplings

(logical system)

(physical system)

Stakeholder
World

Language

Technical
World

Language

High Level
Requirements

Detail Level
Requirements

High Level
Design

Stakeholder Feature

State

Input/
Output

System

System of
AccessInterface

Functional
Role

Design
Component

Functional
Interaction

(Interaction)

Technical
Requirement

Statement

Design
Constraint
Statement

attribute

Stakeholder
Requirement

Statement
attribute attribute

attribute

attributeattribute

WB

WB
BB

BB

“A” Matrix
Couplings

“B” Matrix
Couplings

(logical system)

(physical system)

Stakeholder
World

Language

Technical
World

Language

High Level
Requirements

Detail Level
Requirements

High Level
Design

Stakeholder Feature

State

Input/
Output

System

System of
AccessInterface

Functional
Role

Design
Component

Functional
Interaction

(Interaction)

Technical
Requirement

Statement

Design
Constraint
Statement

attribute

Stakeholder
Requirement

Statement
attribute attribute

attribute

attributeattribute

WB

WB
BB

BB

“A” Matrix
Couplings

“B” Matrix
Couplings

(logical system)

(physical system)

Stakeholder
World

Language

Technical
World

Language

High Level
Requirements

Detail Level
Requirements

High Level
Design

Improve
Pattern

Patterns General
System
Pattern

Develops and Maintains
Core PatternsDevelops and Maintains

Individual Family Patterns

Configures and Specializes
Models from Patterns

Product Lines or
System Families

Individual Product
or System Configurations

Le
ar

ni
ng

s

Configure,
Specialize

Pattern

Metamodel for
Model-Based Systems
Engineering (MBSE)

Pattern Hierarchy for
Pattern-Based Systems

Engineering (PBSE)
Pattern-Based Systems

Engineering (PBSE)
Processes

Pattern Configuration
Process

(Projects,
Applications)

Pattern Management
Process

Figure 11. An S*Pattern is a configurable, re-usable S*Model

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

50

Lawnmower Product Line: Configuration Table

Units Walk-Behind Walk-Behind Walk-Behind Riding Riding Riding Mower Autonomous

Push Mower Mower Self-Propelled Rider Tractor Tractor Autonomous

Push Mower Self-Propelled Wide Cut Rider Lawn Garden Auto Mower

Model Number M3 M5 M11 M17 M19 M23 M100

Market Segment Small
REsident

Medium
Resident

Medium
Resident

Large
Resident

Large
Resident

Home
Gardn

High End
Suburban

Power Engine Manufacturer B&S B&S Tecumseh Tecumseh Kohler Kohler Elektroset

Horsepower HP 5 6.5 13 16 18.5 22 0.5

Production Cutting Width Inches 17 19 36 36 42 48 16

Maximum Mowing Speed MPH 3 3 4 8 10 12 2.5

Maximum Mowing Productivity Acres/Hr 1.6

Turning Radius Inches 0 0 0 0 126 165 0

Fuel Tank Capacity Hours 1.5 1.7 2.5 2.8 3.2 3.5 2

Towing Feature x x

Electric Starter Feature x x x x

Basic Mowing Feature Group x x x x x x x

Mower No. of Anti-Scalping Rollers 0 0 1 2 4 6 0

Cutting Height Minimum Inches 1 1.5 1.5 1.5 1 1.5 1.2

Cutting Height Maximum Inches 4 5 5 6 8 10 3.8

Operator Riding Feature x x x

Grass Bagging Feature Optional Optional Optional Optional Optional Optional

Mulching Feature Standard Factory
Installed

Dealer
Installed

Aerator Feature Optional Optional Optional

Autonomous Mowing Feature x

Dethatching Feature Optional Optional Optional

Physical Wheel Base Inches 18 20 22 40 48 52 16

Overall Length Inches 18 20 23 58 56 68 28.3

Overall Height Inches 40 42 42 30 32 36 10.3

Width Inches 18 20 22 40 48 52 23.6

Weight Pounds 120 160 300 680 705 1020 15.6

Self-Propelled Mowing Feature x x x x x x

Automatic Transmiss. Feature x

Financials Retail Price Dollars 360 460 1800 3300 6100 9990 1799

Manufacturer Cost Dollars 120 140 550 950 1800 3500 310

Maintenance Warranty Months 12 12 18 24 24 24 12

Product Service Life Hours 500 500 600 1100 1350 1500 300

Time Between Service Hours 100 100 150 200 200 250 100

Safety Spark Arrest Feature x x x x x x

Table 2. Pattern configuration table

variable and how much fixed, across the
family of potential configurations. Refer to
Figure 12.

Connection to minimum description
length (MDL) theory. In MDL and
Kolmogorov complexity theories applied
to complexity, there is an idea of the
representation of a system “modulo”
a certain language used to describe it.
Likewise, in PBSE, the configuration of a
pattern is a “description” of that system

within the space of systems governed by
that pattern. If we assume that the pattern
itself is already known or accepted, then
the configuration information becomes a
(much shorter) description of “where in the
pattern space the particular configuration
is,” tying down the degrees of freedom
offered by the pattern.

If the language that emerges from a
pattern is extremely flexible (for example,
English prose), then the degrees of freedom

are very large indeed, and the configuration
data itself must be extensive. But, if the
pattern is based on a construct like the
S*Metamodel, then the domain-specific
systems engineering language that emerges
from that pattern is orders of magnitude
more restrictive, and the configuration
information is accordingly much simpler
and easier to understand, analyze, and
communicate.

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

51

ALL MODELS ARE CONFIGURATIONS OF MORE
ABSTRACT PATTERNS

We arrive at a core idea for simplifying
the systems engineering process. Instead of
asking how to adopt all the sophisticated
machinery of formal PBSE, we can alterna-
tively realize that all models are configura-
tions of more abstract patterns, whether we
formalize those patterns are not. Moreover,
even non-MBSE engineering projects are
in fact creating informal “configurations”
of informal “patterns” every day and have
been all along. As evidence of this, consider
all the “important known stuff ” that we
don’t always write down in projects — the
content of industry and enterprise stan-
dards comes first to mind. We “invoke”
these by reference, but we rarely import

explicitly all of their content into our
specifications. They become stacks of addi-
tional “side” documents that vex designers,
suppliers, and others who must conform to
them or verify conformance.

What is missing in (most but not all of)
these traditional approaches is a sufficient
machinery to truly configure these patterns
of “external” data for a given project. At
best, we might typically see citations of par-
ticular sections of these documents that are
chosen to apply. More typically, we are left
to wonder which parts of these stacks may
apply and which do not. By adopting some
of the simplest elements of PBSE discipline,
once onerous processes can become assets,
as we move more rapidly with configu-
ration data, supported by less frequently

Figure 12. Pattern compression

Manufacturing
Process

Manufacturing
Facility

Medical
Device

1

2

3

Over-the-
Road Vehicle

–Log10 [Pattern Configuration Size/Model Size]

System Type

consulted (but nevertheless available when
needed) “pattern” information in these
other references.

CONCLUSIONS
1. The specific MBSE and PBSE

methods discussed here have been
successfully applied across a wide
range of domains: transportation,
mil/aero, communications, medicine/
healthcare, advanced manufacturing,
consumer products.

2. The minimum base of information
required to perform specific systems
engineering process areas is greatly
clarified by MBSE metamodel under-
standing.

3. Minimal MBSE models contain
information missing from many
projects, causing practical project
problems.

4. Minimal underlying models generate
the redundancies needed across
different task-based artifacts, with
greater consistency or less effort to
maintain that consistency.

5. Formalization of patterns as config-
urable models leads to further size
compression: configurations.

6. All models are actually
configurations of more abstract
patterns. Realizing and exploiting
this can turn the previous
“deadweight” of standards and other
external references into powerful
assets for accelerating work.

REFERENCES
 ■ Ahmed, J., J. Hansen, W. Kline, S. Peffers, and W. Schindel.

2011. “All Innovation is Innovation of Systems: An Integrated
3-D Model of Innovation Competency.” To appear in Proceed-
ings of the 2011 American Society for Engineering Education
Annual Conference, Vancouver, CA-BC, 26-29 June.

 ■ Alexander, Christopher, Sara Ishikawa, Ingrid Fiksdahl-King,
and Shlomo Angel. 1977. A Pattern Language: Towns, Buildings,
Construction. New York, US-NY: Oxford University Press.

 ■ Ashby, W. Ross. 1957. An Introduction to Cybernetics. London,
GB: Chapman & Hall.

 ■ Bar-Yam, Y. 2003b. “When Systems Engineering Fails —
Toward Complex Systems Engineering.” Proceedings of the
International Conference on Systems, Man & Cybernetics, 2:
2021-2028. Piscataway, US-NJ: IEEE Press.

 ■ Bar-Yam, Y. 2005. “About Engineering Complex Systems:
Multiscale Analysis and Evolutionary Engineering.”
Engineering of Self-Organizing Systems 2004, LNCS 3464: 16-
31, Springer-Verlag.

 ■ Bradley, J, M. Hughes, and W. Schindel, 2010. “Optimizing
Delivery of Global Pharmaceutical Packaging Solutions, Using
Systems Engineering Patterns.” Paper presented at the 20th
Annual International Symposium of INCOSE, Chicago, US:IL,
11-15 July.

 ■ Braha, D., A. Minai, Yaneer Bar-Yam, eds. 2006. Complex
Engineered Systems: Science Meets Technology. Berlin
Heidelberg, DE: Springer.

 ■ Chaitin, Gregory. 2005. Metamath: The Quest for Omega, New
York, US-NY: Pantheon.

 ■ Cloutier, Robert J., Dinesh Verma. 2007. “Applying the
Concepts of Patterns to Systems Architecture.” Systems
Engineering (Wiley) 10 (2): 138-154.

 ■ Duda, Richard. O., Peter E. Hart, David G. Stork. 2001. Pattern
Classification (2nd ed.). New York, US-NY: Wiley.

 ■ Estafan, J. 2008. “Survey of Model-Based Systems Engineering
(MBSE) Methodologies.” INCOSE MBSE Initiative.

 ■ Gamma, E., R. Helm, Ralph Johnson, J. Vlissides. 1995. Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, US-MA: Addison-Wesley.

 ■ Gould, S. J. 2003. The Hedgehog, the Fox, and the Magister’s
Pox: Mending the Gap between Science and the Humanities.
New York, US-NY: Three Rivers Press.

 ■ Grunwald, P. 2007. The Minimum Description Length Principle.
Cambridge, US-MA: MIT Press.

 ■ Gunyon, R., and W. Schindel. 2010. “Engineering Global
Pharmaceutical Manufacturing Systems in the New
Environment.” Paper presented at the 20th Annual
International Symposium of INCOSE, Chicago, US:IL,
11-15 July.

 ■ Haskins, Cecilia. 2005. “Application of Patterns and Pattern
Languages to Systems Engineering.” Paper presented at the
15th Annual International Symposium of INCOSE, Rochester,
US-NY, 13-16 June.

SP
ECIA

L
FEA

TU
R

E
A

U
G

U
ST 2O

24
VOLUM

E 27/ ISSUE 4

52

 ■ Haskins, Cecilia, ed. 2010. Systems Engineering Handbook
Version 3.2. Seattle, WA: International Council on Systems
Engineering.

 ■ INCOSE HSIG web site. https://www.incose.org/communities/
working-groups-initiatives/human-systems-integration.

 ■ INCOSE MBSE web site: https://www.incose.org/communities/
working-groups-initiatives/mbse-initiative.

 ■ INCOSE SSWG web site: https://www.incose.org/communities/
working-groups-initiatives/systems-science

 ■ ISO 10303 AP233 web site. https://segoldmine.ppi-int.com/
node/44952.

 ■ ISO/IEC 15288. 2002. Systems Engineering – System Life
Cycle Processes. Geneva, CH: International Organization for
Standardization.

 ■ Karayanakis, N. 1993. Computer-Assisted Simulation of
Dynamic Systems with Block Diagram Languages. Boca Raton,
US-FL: CRC Press.

 ■ Kauffman, Stuart. 2000. Investigations. New York, US-NY:
Oxford University Press.

 ■ Kuras, M. L., B. E. White. 2005. “Engineering Enterprises
Using Complex-System Engineering.” Paper presented at the
15th Annual International Symposium of INCOSE, Rochester,
US-NY, 13-16 June.

 ■ Li, Ming, Paul Vitany. 1997. An Introduction to Kolmogorov
Complexity and its Applications Second edition. New York,
US-NY: Springer.

 ■ Mellor, Stephen, Marc J. Balcer. 2002. Executable UML: A
Foundation for Model-Driven Architecture. Boston, US-MA:
Addison-Wesley.

 ■ Schindel, W. 1996. “Systems Engineering: An Overview of
Complexity’s Impact.” Tech Paper 962177, SAE International.

 ■ Schindel, W. 1997. “The Tower of Babel: Language and Mean-
ing in System Engineering.” Technical Report No. 973217 SAE
International.

 ■ Schindel, W. 2005a. “Requirements Statements are Transfer
Functions: An Insight from Model-Based Systems Engineering.”
Paper presented at the 15th Annual International Symposium of
INCOSE, Rochester, US-NY, 13-16 June.

 ■ Schindel, W. 2005b. “Pattern-Based Systems Engineering:
An Extension of Model-Based Systems Engineering.” TIES
tutorial presented at 15th Annual International Symposium of
INCOSE, Rochester, US-NY, 13-16 June.

 ■ Schindel, W. 2006. “Feelings and Physics: Emotional,
Psychological, and Other Soft Human Requirements, by
Model-Based Systems Engineering.” Paper presented at the
16th Annual International Symposium of INCOSE, Orlando,
US-FL, 9-13 July.

 ■ Schindel, W. 2010. “Failure Analysis: Insights from Model-
Based Systems Engineering.” Paper presented at the 20th
Annual International Symposium of INCOSE, Chicago, US-IL,
11-15 July.

 ■ Schindel, W. 2011. “Systems Engineering for Advanced
Manufacturing: Unit Op Insights from Model-Based
Methods.” Paper presented at the 21st Annual International
Symposium of INCOSE, Denver, US-CO, 20-23 June.

 ■ Schindel, William D., Vern R. Smith. 2002. “Results of
Applying a Families-of-Systems Approach to Systems
Engineering of Product Line Families.” Technical Report
2002-01-3086. SAE International.

 ■ Shannon, Claude. 1963. A Mathematical Theory of
Communication. Champaign, US-IL: University of Illinois
Press.

 ■ Snow, C. P. 1960. The Two Cultures. Cambridge, GB:
Cambridge University Press. pp. 181. ISBN 978-0521457309
(second edition; 1993 reissue).

 ■ SysML Partners web site. http://www.sysml.org/.

ABOUT THE AUTHOR
[Editor: Author biography was current when the paper was
initially published in 2011.]

William D. Schindel is president of ICTT System Sciences, a
systems engineering company, and developer of the Systematica™
methodology for model and pattern-based systems engineering.
His 40-year engineering career began in mil/aero systems with
IBM Federal Systems, Owego, NY, included service as a faculty
member of Rose-Hulman Institute of Technology, and founding
of three commercial systems-based enterprises. He has consulted
on improvement of engineering processes within automotive,
medical/health care, manufacturing, telecommunications, aero-
space, and consumer products businesses. Schindel earned the
BS and MS in mathematics, and was awarded the Hon. D.Eng by
Rose-Hulman Institute of Technology for his systems engineering
work.

 ■ Simmons, G. 2003. Introduction to Topology and Modern
Analysis. Krieger (Reprint Edition US).

 ■ Simoni, M., E. Andrijcic, W. Kline, and A. Bernal. 2016. “Help-
ing Undergraduate Students of any Engineering Discipline
Develop a Systems Perspective.” Paper presented at the 26th
Annual International Symposium of INCOSE, Edinburgh,
GB-SCT, 18-21 July.

 ■ Smaling, Rudolph. 2005. “System Architecture Analysis and
Selection Under Uncertainty.” Doctoral dissertation, MIT,
(Cambridge, US-MA), from http://hdl.handle.net/1721.1/28943 .

 ■ Teller, A. 2016. Ted Talk by Astro Teller, 14 April. Alphabet X,
retrieved from: www.ted.com/talks/astro_teller_the_unexpect-
ed_benefit_of_celebrating_failure .

 ■ Thomke, S. 2003. Experimentation Matters: Unlocking the
Potential for New Technologies for Innovation. Boston, US-MA:
Harvard Business Review Press.

 ■ Walden, D. et al., eds. 2015. Systems Engineering Handbook:
A Guide for System Life Cycle Processes and Activities Fourth
Edition, INCOSE, San Diego, US-CA: Wiley.

Schindel – Innovation, Risk, Agility continued from page 42
 ■ Wiener, N. 1949. “The Extrapolation, Interpolation and

Smoothing of Stationary Time Series.” MIT 1942. A war-time
classified report published postwar. Cambridge, US-MA: MIT
Press http://www.isss.org/lumwiener.htm .

ABOUT THE AUTHOR
[Editor: Author biography was current when the paper was
initially published in 2017.]

William D. (Bill) Schindel is president of ICTT System
Sciences. His engineering career began in mil/aero systems with
IBM Federal Systems, included faculty service at Rose-Hulman
Institute of Technology, and founding of three systems enterprises.
Bill co-led a 2013 project on systems of innovation in the INCOSE
System Science Working Group. He is an INCOSE Fellow, co-leads
the patterns challenge team of the OMG/INCOSE MBSE initiative,
and is a member of the lead team of the INCOSE agile systems
engineering life cycle discovery project.

The flexibility you
need. The depth your
success depends on.

EARN YOUR
SYSTEMS
ENGINEERING
DEGREE
ONLINE

There’s a reason Missouri University of Science and Technology
leads the way in online systems engineering graduate education:
We’ve been practicing and perfecting the art of using technology
to engage and inspire for a long time. With faculty who teach
based on real-world systems engineering experience, a worldwide
network of successful alumni and a curriculum that sets standards
across the industry, Missouri S&T is the perfect place for you.

LEARN MORE
https://online.mst.edu

https://online.mst.edu

A better world through
a systems approach

®

THE BEST ENGINEERS ALLOW
FOR A LITTLE GIVE.

Become an INCOSE volunteer today!
incose.org/volunteer

INCOSE VOLUNTEER OPPORTUNITY

https://incose.org/volunteer

Network and engage
with the systems
engineering community

CONNECT

Enhance your knowledge
through collaboration,

research, and education

LEARN

Serve as an expert and
thought leader to influence
products and standards

LEAD

Find career resources
and improve your

professional status

PROSPER

International Council on Systems Engineering
A better world through a systems approach / www.incose.org

JOIN INCOSE TODAY
VISIT WWW.INCOSE.ORG/JOIN

https://www.incose.org/join

INCOSEINCOSE

Sep 2024
09

SWISSED24: Building Bridges
Zurich, Switzerland

Sep 2024
19–21

INCOSE’s Annual Western States Regional Conference (WSRC)
Albuquerque, New Mexico, USA

Nov 2024
05–06

INCOSE UK’s Annual Systems Engineering Conference
Edinburgh, Scotland

Dec 2024
12–13

Complex Systems Design & Management (CSD&M) Conference
Paris, France

Feb 2025
01–04

INCOSE’s Annual International Workship (IW)
Seville, Spain

Sep 2024
22–25

SESA’s Systems Engineering Test & Evaluation (SETE) Conference
Melbourne, VIC, Australia

Jul 2025
26–31

INCOSE’s 35th Annual International Symposium (IS)
Ottawa, Canada

Sep 2024
23–24

Systems Analysis & Modelling (SAM) Conference
Linz, Austria

®

Upcoming Events

Upcoming
Events

	Front Cover_Vol 27 Issue 4
	From the Editor-In-Chief
	Special Feature
	Maps or Itineraries? A Systems Engineering Insight from Ancient Navigators
	Got Phenomena? Science-Based Disciplines for Emerging Systems Challenges
	Explicating System Value through First Principles: Re-Uniting Decision Analysis with Systems Engineering
	Innovation, Risk, Agility, and Learning, Viewed as Optimal Control and Estimation
	What Is the Smallest Model of a System?

