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e are pleased to publish 
the August 2024 INSIGHT 

issue published cooperatively 
with John Wiley & Sons as 

the systems engineering practitioners’ 
magazine. The INSIGHT mission is to 
provide informative articles on advancing 
the practice of systems engineering and 
to close the gap between practice and the 
state of the art as advanced by Systems 
Engineering, the Journal of INCOSE also 
published by Wiley.

The focus of this August issue of 
INSIGHT is theoretical foundations: 
impacts on practice, featuring the 
contributions of MBSE Patterns Working 
Group chair and INCOSE fellow William 
(Bill) Schindel. Bill was asked by Sandy 
Friedenthal and Heinz Stoewer beginning 
in 2019 to provide materials from his past 
work on theoretical foundations for the 
preparation of the forthcoming Systems 
Engineering Vision 2035 led by Sandy, 
Heinz, and Garry Roedler published 
in 2021 (www.incose.org/publications/
se-vision-2035). Bill’s contributions 
towards the Vision 2035 were reviewed 
by Tom McDermott, Chris Paredis, David 
Rousseau, Jon Wade, and Michael Watson 
(current INCOSE president-elect).

The Vision 2035 was preceded by the 
Systems Engineering Vision 2020 (2007) 
and A World in Motion: Systems Engineer-
ing Vision 2025 (2014). In particular, the 
Vision 2025 called for stronger foundations 
noting that systems engineering practice 
is only weakly connected to the underlying 
theoretical foundation, and educational pro-
grams focus on practice with little emphasis 
on underlying theory. The Vision 2025 
objective was that the theoretical foundation 
of systems engineering encompasses not only 
mathematics, physical sciences, and systems 
science, but also human and social sciences. 

William Miller, insight@incose.net

FROM THE 
EDITOR-IN-CHIEF
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W This foundational theory is taught as a nor-
mal part of systems engineering curricula, 
and it directly supports systems engineering 
methods and standards. Understanding the 
foundation enables the systems engineer to 
evaluate and select from an expanded and 
robust toolkit, the right tool for the job.

Bill asserts “that much of that foundation 
is closer than realized, not always requiring 
discovery ‘from scratch.’ There are well-
established foundations of STEM and 
other disciplines, discovered and highly 
successful during three centuries of the 
transformation of human life. These 
foundations await a wider awareness and 
exploitation by the systems community, 
providing a powerful starting point for 
what will follow. The foundations are both 
quantitative and qualitative, and richly 
endowed with humanistic aspects.” Bill 
summarizes three phenomenon-based 
elements of that foundation, providing 
already known starting points: the 
systems phenomenon, the value selection 
phenomenon, and the model trust by 
groups phenomenon.” All these elements 
have significant implications for systems 
engineering practitioners, educators, and 
researchers. We thank Bill along with co-
author Troy Peterson.

We lead the August INSIGHT with Bill 
Schindel’s metaphorical thought piece 
questioning the approach to systems 
engineering as described in the INCOSE 
Systems Engineering Handbook: “Maps or 
Itineraries? A Systems Engineering Insight 
from Ancient Navigators.” Processes 
and procedures are the heart of current 
descriptions of systems engineering and 
enterprise-specific business process models 
reinforce this focus on process and proce-
dure. The attention devoted to describing 
process, sequence, or activity usually 
exceeds by orders of magnitude the amount 

devoted to describing the information flow-
ing through that process. Scholarly works 
suggest the ancients navigated by itinerar-
ies that preceded the innovation of maps. 
These itineraries listed ports and landmarks 
to facilitate commercial and military sailing 
and lists of locations and distances on land 
routes. An itinerary is a sequence of steps 
whose performance is expected to move us 
from point A to point B. By contrast, a map 
describes the geographic space of interest, 
identifying points in geographic space and 
the relationships between those points. 
A map is a relational model that answers 
an infinity of questions that may arise in 
various situations. A map is not a proce-
dure. This is important to understanding 
the current state of systems engineering. 
Metaphorically, systems engineers must 
“navigate” a type of “journey,” like their an-
cient navigator counterparts. The “journey” 
of interest here for the systems engineer is 
an engineering project that is 1) more com-
plex and abstract than geographic travel, 
2) has a starting point and destination, 3) 
with opportunities to become lost or dis-
oriented, 4) and with risks of not reaching 
the desired destination. The limitations of 
procedural checklists are well known: a) all 
the required steps have been performed, 
b) the checklist boxes are all checked, but 
c) the result is not acceptable. What is 
missing is not just some overlooked steps 
to record, but relational map knowledge 
that cannot be represented as process steps 
alone, because is it about a map of some-
thing different than process space. This is 
about the underlying nature of design and 
exploration of spaces, and not about a cer-
tain styles of engineering processes versus 
others. The history of science, engineering, 
and mathematics offers evidence that im-
proved cognitive maps of spaces have had 
profound impact in advancing those fields.
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Congratulations 

Paul White,
ESEP!

Weber State University recognizes Paul White for earning 
the Expert Systems Engineering Professional Certification! 
Paul is a valued instructor and industry advisory board 
member for our Master of Science in Systems Engineering. 
Paul has 23 years of knowledge and experience in the 
practice of Systems Engineering.

Learn more about our online 
MASTER OF SCIENCE IN SYSTEMS ENGINEERING

weber.edu/msse

The second article, “Got Phenomena? 
Science-Based Disciplines for Emerging 
Systems Challenges,” takes on the oft stated 
pronouncements that systems engineering 
is not a “real” engineering discipline such 
as civil. mechanical, chemical, and electri-
cal engineering. The argument is that these 
fields have “real physical phenomena,” 
“hard science” based laws, and first prin-
ciples, claiming systems engineering lacks 
equivalent phenomenological foundations. 
We counter that the laws and phenomena 
of traditional disciplines are less funda-
mental than the system phenomenon from 
which they spring. This is a reminder of 
emerging higher disciplines, with phe-
nomena, first principles, and physical laws, 
with the system phenomenon being the 
wellspring of engineering opportunities 
and challenges. Governed by Hamilton’s 
principle, the system phenomenon is a 
traditional path for derivation of equations 
of motion or physical laws of so-called 
“fundamental” physical phenomena of 
mechanics, electromagnetics, chemistry, 
and thermodynamics. Examples include 
ground vehicles, aircraft, marine vessels, 
biochemical networks, health care, distri-
bution networks, market systems, ecolo-
gies, and the Intent of things (IoT).

The third article, “Explicating System 
Value through First Principles: Re-
Uniting Decision Analysis with Systems 
Engineering,” is essential to delivering 
system value. The systems engineering 
profession has had a significant focus on 
improving systems engineering processes. 
While process plays an important role, the 
focus on process is often at the expense of 
foundational engineering axioms and their 
contribution to system value. Consequently, 
systems engineers are viewed as process 
developers and managers versus technical 
leaders with a deep understanding of 

how system interactions are linked to 
stakeholder value. This paper describes 
how pattern-based systems engineering 
(PBSE), as outlined within INCOSE’s 
model-based systems engineering (MBSE) 
initiative, explicates system value through 
modeling of first principles, re-uniting 
systems engineering and decision analysis 
capabilities.

The fourth article, “Innovation, Risk, 
Agility, and Learning, Viewed as Optimal 
Control and Estimation,” summarizes 
how optimal control and estimation 
in “noisy” environments provides a 
framework to advance understanding 
of system innovation life cycles and 
management of decision risks and 
learning. The ISO15288 process framework 
and its exposition in the INCOSE 
Systems Engineering Handbook describe 
system development and other life cycle 
processes. Concerns about improving the 
performance of processes in dynamic, 
uncertain, and changing environments 
are partly addressed by “agile” systems 
engineering approaches. Both are typically 
described in the procedural language of 
business processes, so it is not always 
clear whether the different approaches are 
fundamentally at odds, or just different 
sides of the same coin. Describing the 
target system, its environment, and the life 
cycle management processes using models 
of dynamical systems allows us to apply 
earlier technical tools, such as the theory of 
optimal control in noisy environments, to 
emerging innovation methods.

The final article is “What Is the Smallest 
Model of a System?,” How we represent 
systems is fundamental to the history of 
mathematics, science, and engineering. 
Model-based engineering methods shift the 
nature of representation of systems from 
historical prose forms to explicit data struc-

tures more directly comparable to those of 
science and mathematics. However, using 
models does not guarantee simpler rep-
resentation—indeed a typical fear voiced 
about models is that they may be too com-
plex. Minimality of system representations 
is of both theoretical and practical interest. 
The mathematical and scientific interest is 
that the size of a system’s “minimal repre-
sentation” is one definition of its complexi-
ty. The practical engineering interest is that 
the size and redundancy of engineering 
specifications challenge the effectiveness 
of systems engineering processes. How 
can systems work be made 10:1 simpler to 
attract a 10:1 larger global community of 
practitioners?

We hope you find INSIGHT, the prac-
titioners’ magazine for systems engineers, 
informative and relevant. Feedback from 
readers is critical to INSIGHT’s quality. 
We encourage letters to the editor at 
insight@incose.net. Please include “letter to 
the editor” in the subject line. INSIGHT 
also continues to solicit special features, 
standalone articles, book reviews, and 
op-eds. For information about INSIGHT, 
including upcoming issues, see https://
www.incose.org/products-and-publications/
periodicals#INSIGHT. For information about 
sponsoring INSIGHT, please contact the 
INCOSE marketing and communications 
director at marcom@incose.net. 

https://weber.edu/msse
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Systems Engineering: The Journal of The International Council on Systems Engineering

Call for Papers
he Systems Engineering journal is intend ed to be a primary 
source of multidisciplinary information for the systems engineer-
ing and management of products and services, and processes of 
all types. Systems engi neering activities involve the technologies 

and system management approaches needed for
• definition of systems, including identi fication of user 

requirements and technological specifications;
• development of systems, including concep tual architectures, 

tradeoff of design concepts, configuration management during 
system development, integration of new systems with legacy 
systems, inte grated product and process development; and

• deployment of systems, including opera tional test and 
evaluation, maintenance over an extended life-cycle, and 
re-engineering.

Systems Engineering is the archival journal of, and exists to serve the 
following objectives of, the International Council on Systems Engineer-
ing (INCOSE):

• To provide a focal point for dissemination of systems 
engineering knowledge

• To promote collaboration in systems engineering education 
and research

• To encourage and assure establishment of professional 
standards for integrity in the practice of systems engineering

• To improve the professional status of all those engaged in the 
practice of systems engineering

• To encourage governmental and industrial support for research 
and educational programs that will improve the systems 
engineering process and its practice

The journal supports these goals by provi ding a continuing, respected 
publication of peer-reviewed results from research and development in 
the area of systems engineering. Systems engineering is defined broadly 
in this context as an interdisciplinary approach and means to enable the 
realization of succes s ful systems that are of high quality, cost-effective, 
and trust worthy in meeting customer requirements.

The Systems Engineering journal is dedi cated to all aspects of the 
engineering of systems: technical, management, economic, and social. 
It focuses on the life-cycle processes needed to create trustworthy and 
high-quality systems. It will also emphasize the systems management 
efforts needed to define, develop, and deploy trustworthy and high 
quality processes for the production of systems. Within this, Systems 
Engineer ing is especially con cerned with evaluation of the efficiency and 
effectiveness of systems management, technical direction, and integra-
tion of systems. Systems Engi neering is also very concerned with the 
engineering of systems that support sustainable development. Modern 
systems, including both products and services, are often very knowl-
edge-intensive, and are found in both the public and private sectors. 
The journal emphasizes strate gic and program management of these, 
and the infor mation and knowledge base for knowledge princi ples, 
knowledge practices, and knowledge perspectives for the engineering of 

systems. Definitive case studies involving systems engineering practice 
are especially welcome.

The journal is a primary source of infor mation for the systems engineer-
ing of products and services that are generally large in scale, scope, 
and complexity. Systems Engineering will be especially concerned with 
process- or product-line–related efforts needed to produce products that 
are trustworthy and of high quality, and that are cost effective in meeting 
user needs. A major component of this is system cost and operational 
effectiveness determination, and the development of processes that 
ensure that products are cost effective. This requires the integration of a 
number of engi neering disciplines necessary for the definition, devel-
opment, and deployment of complex systems. It also requires attention 
to the life cycle process used to produce systems, and the integration 
of systems, including legacy systems, at various architectural levels. 
In addition, appropriate systems management of information and 
knowledge across technologies, organi zations, and environments is also 
needed to insure a sustainable world.

The journal will accept and review sub missions in English from any 
author, in any global locality, whether or not the author is an INCOSE 
member. A body of international peers will review all submissions, and 
the reviewers will suggest potential revisions to the author, with the intent 
to achieve published papers that

• relate to the field of systems engineering;
• represent new, previously unpublished work;
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INSIGHT Special Feature

INTRODUCTION

 ABSTRACT
Processes and procedures are the heart of current descriptions of systems engineering. The “vee diagram,” ISO 15288, the INCOSE 
Systems Engineering Handbook, and enterprise-specific business process models focus attention on process and procedure. However, 
there is a non-procedural way to view systems engineering. This approach is to describe the configuration space “navigated” by 
systems engineering, and what is meant by system trajectories in that space, traveled during system life cycles. This sounds abstract 
because we have lacked explicit maps necessary to describe this configuration space. We understand concrete steps of a procedure, 
so we focus there. But where do these steps take us? And what does “where” mean in this context? Clues are found in recent 
discoveries about ancient navigation, as well as later development of mathematics and physics. This paper, part I of a case for 
stronger model-based systems engineering (MBSE) semantics, focuses on the underlying configuration space inherent to systems.

Maps or Itineraries? A 
Systems Engineering 
Insight from Ancient 
Navigators
William D. Schindel, schindel@ictt.com
Copyright © 2015 by William D. Schindel.  Published and used by INCOSE with permission.

[Editor: This paper for systems engineering foundations refers to the Systems Engineering Vision 2025 (Copyright 2014 by the 
International Council on Systems Engineering), INCOSE Systems Engineering Handbook v3.1 (Copyright 2015 by INCOSE), and 
ISO 15288:2015.]

Systems engineering processes. 
In contemporary discussion of 
systems engineering, we encounter 
descriptions of “vees,” waterfalls, 

spirals, and other picturesque metaphors 
for the work process. In industry or 
enterprise-specific descriptions (ISO 
15288:2015, INCOSE Systems Engineering 
Handbook 2015) of such work processes, 
the amount of ink and attention devoted 
to describing process, sequence, or activity 
usually exceeds by orders of magnitude 
the amount devoted to describing the 
information flowing through that process. 
We ask here why this is the case, and 
whether there is a more optimum future 
state for the effective practice of systems 
engineering. This inquiry is separately 
extended to include the life cycle trajectory 
of systems in (Schindel 2015).

MAPS VERSUS ITINERARIES: CONCEPTS OF 
SPACE 
Maps and Itineraries of the Ancient 
Navigator

In an exhibition at New York Universi-
ty’s Institute for the Study of the Ancient 
World, scholars (Casagrande-Kim et al. 
2013) suggested that ancient Greco-Roman 
navigators did not possess the “ancient 
maps” of the sort later attributed to them. 
Instead, it was asserted that these images 
were generated later, during the Middle 
Ages, and attributed to the thinking and 
artifacts of ancient navigators:

 “Why do we have virtually no ancient 
maps of the ancient world?” asked a 
reviewer of the exhibition (Kaylan 2013). 
“After all, sailors, traders and soldiers 
had to find their way around. The show’s 

curator, Roberta Casagrande-Kim, distin-
guishes between a map and an itinerary. 
The latter ‘must have existed aplenty, but 
being strictly functional probably deteri-
orated through overuse,’ she says. ‘A map, 
however small its focus, suggests a kind of 
implicit overview, and that is the show’s 
subject.’” (Emphases added)   

In describing how human concepts of 
space and its representations have evolved, 
these scholars reported that “Greeks and 
Romans usually employed what are known 
as periploi (‘coastal navigations’), which list-
ed ports and landmarks to facilitate com-
mercial and military sailing, and itineraria 
(‘journeys’), lists of locations and distances 
based on land routes” (Casagrande-Kim et 
al, 2013) (emphases added).

 Figure 1 suggests the conceptual dif-
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ference between a map and an itinerary. 
An itinerary is a sequence of steps whose 
performance is expected to move us from 
Point A to Point B. By contrast, a map 
describes the geographic space of interest, 
identifying points in geographic space and 
the relationships between those points. A 
map is a relational model that answers an 
infinity of questions that may arise in vari-
ous situations. A map is not a procedure. By 
contrast, an itinerary is a stepwise proce-
dure intended for a limited purpose.

A key point examined by scholars is 
the concept of geographic space held by 
humans at the time these evolving artifacts 
were in development (Barkowski 2002). 
The important notion here is that a map 
would not emerge sooner than the related 
cognitive concepts of the space it describes. 
To appreciate this, we must imagine a time 
when concepts of geographic space were 
not yet as developed as today. For example, 
recall the development of the Mercator 
cylindrical projection of a sphere (Figure 2), 
and consider the practical impacts of con-
ceptual challenges that would have preceded 
its availability.

For purposes of this discussion, the 

important idea is that people can lack a con-
cept of space that is adequate to what they 
are trying to do in that space. It is difficult to 
imagine being without an already familiar 
concept, but important to understanding 
the current state of systems engineering. We 
suggest that equally fundamental concepts 
are not yet in the regular cognitive maps of 
the current systems engineer.

Maps and Itineraries of the Systems 
Engineer

Systems engineering journeys. At least 
metaphorically speaking, systems engineers 
must “navigate” a type of “journey, ” like 
their ancient navigator counterparts. The 
“journey” of interest here for the systems 
engineer is an engineering project:

 ■ More complex and abstract than geo-
graphic travel, but …

 ■ it has a starting point and destination,
 ■ with opportunities to become lost or 
disoriented,

 ■ with risks of not reaching the desired 
destination.

We will later argue that this is more than 
just a metaphorical comparison. But first, 

let us consider the sorts of practical impli-
cations at stake for systems engineers.

The limitations of procedural check-
lists. Experienced practitioners usually 
admit the following problem situation is a 
familiar one:

 ■ The junior engineer reports having 
performed all the required steps

 ■ All the checklist boxes are checked
 ■ But the result is not acceptable.

Why does the junior navigator not 
recognize, much less avoid, the problem? 
Often, it is because of deeper knowledge 
that the senior navigator has internalized 
through experience, but which is not 
represented in the official process steps. We 
will suggest here that what is missing is not 
just some overlooked steps to record, but 
relational map knowledge that cannot be 
represented as process steps alone, because 
is it about a map of something different 
than process space.

Are we there yet? Whether the systems 
engineering journey in a project is based 
on waterfalls, spirals, or other metaphorical 
process approaches, certain aspects are 
inherently iterative, repeating certain 
activities until a sufficiency is achieved 
(Figure 3). This is about the underlying 
nature of design and exploration of 
spaces, and not about a certain styles of 
engineering processes versus others.

So, even when individual process steps 
are clearly defined, a frequently encoun-
tered and important question about a 
systems engineering process is “are we done 
yet?” This question is answered by different 
means in different organizations:

 ■ By examining the situation in an under-
lying information space, or else . . .

 ■ By referring to a checklist of steps that 
should have been completed, or else . . .

 ■ By referring to schedule or leadership 
requiring that we be done by now, or …

 ■ By even more arbitrary judgments.

We will argue here that “are we done 
yet?” should be replaced by “are we there 
yet?,” after we better solidify what “there” 
and “where” mean.

The above suggest that the practical 
implications at stake here are significant 
for the future of systems engineering. 
The history of science, engineering, and 
mathematics also offers evidence that 
improved cognitive maps of spaces have 
had profound impact in advancing those 
fields. Two of the most famous cases are the 
geometrizations offered by Descartes and 
Hilbert.

The geometrization of algebra. Rene 
Descartes is credited (Moerdijk 2012) with 

Figure 1. Map versus itinerary
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Figure 2. The Mercator projection of sphere onto cylinder
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moving understanding of symbolic algebra 
(in particular, algebraic relationships) 
into a geometric space setting, in which 
spatial understanding could contribute 
to understanding of abstract symbolic 
mathematics, viewed in “Cartesian” 
coordinates (Figure 4).

supporting a geometrical view of mathe-
matical function (Figure 5). The tools of the 
modern controls engineer and communi-
cations engineer, among others, have been 
profoundly impacted by geometry-based 
intuitive basis for more abstract mathemat-
ical operations: distance (metric spaces), 
projections, inner products (including con-
volutions and frequency transforms). These 
become applicable to “spatialized” system 
configuration space, in the MBSE approach 
described below making what was abstract 
more concrete and intuitive.

Clues About a Stronger Semantic Model of 
System Space

It is relatively clear that the description 
of a sequence of systems engineering 
process steps (as in ISO/IEC 15288, the 
INCOSE Systems Engineering Handbook, 
etc.) could be thought of as the metaphor-
ical equivalent of the ancient traveler’s 
itinerary. But, in the same vein, what would 
be the systems engineering equivalent of 
the geographic map for such a journey? 
Through what space is the systems engineer 
traveling? This is not so immediately clear, 
but we can begin with what it is not.

A map of the space through which the 
systems engineer travels:

 ■ is not a list of SE tasks
 ■ is not a model of the SE process —
ancient mariners were not traveling 
through “step space,” but “geographic 
space.”

A geographic map describes:
 ■ where we want to end up, along with 
other points in geographic space where 
we might conceivably be at a given time

 ■ key relationships between these points, 
including distance metrics

 ■ expressed in 1, 2, or 3 dimensions: de-
grees of freedom in geographic space.

So, what is the conceptual systems space 
through which the systems engineer is 
navigating? To help answer this, here are a 
few things that we also know:

 ■ The work of systems engineering pro-
duces, and consumes, information

 ■ The space through which the systems 
engineer navigates would be a map 
about that information, not the steps of 
the travel process

 ■ We assert that the space we are inter-
ested in should describe the space of 
possible places for a system of interest 
to be, good or not, and how they are 
related to each other: the configuration 
space of the system

 ■ We know one kind of map about 
information: an information model 
(for example, an entity-relationship or 
similar model)

 ■ The hard sciences provide, in the maps 
for physics, chemistry, thermodynam-
ics, and other domains, representations 
of underlying relationships (laws)
• Frequently represented in the form of 

mathematical equations.
• These relationships and their impact 

on systems space are the focus of 
attention: Imagine instead trying 
to learn chemistry by studying the 
process of cooking!

 ■ Can systems science provide maps in 
the form of underlying systemic rela-
tionships?

Semantic models. INCOSE MBSE 
thought leadership has called for “stronger 
semantic models” (Long 2014a and 2014b) 
to support the future progress of mod-
el-based systems engineering. This refers to 
the notion that, while current and historical 
modelling language and data exchange 
standards provide “metamodel” underpin-
nings, additional progress is needed.

We strongly agree with the call for stron-
ger underlying MBSE semantics. Before 
discussing that subject, we recall what is 
meant here by “semantics”.

There is an unfortunate practice in 
popular culture to use the term “semantics” 
as a dismissive pejorative, as if that term 
meant “insignificant detail” or “hair-split-
ting.” To the contrary, “semantics” defines 
fundamental meaning, whether referring 
to formal engineering models, databases, 
cognition, or everyday natural language. 
Nothing could be more important to the 
success of human endeavor than shared 
semantics (meaning) that is sufficient for 
the activities in which humans engage.  For 
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The geometrization of mathemat-
ical functions. As system models also 
add modeling of (infinite dimensional) 
behavior, Hilbert Space (Simmons 1963) 
provided the next required generalization, 
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purposes of this paper, we define “seman-
tics” of a conceptual space as the degrees of 
freedom of that space, and the relationships 
between them — the “map” of the space.

An example of “semantics” in the 
technical space of science, engineering, 
and mathematics is Newton’s second 
law, sometimes expressed in equation 
form: F = mA. In discovering this natural 
law, Newton not only arrived at a 
quantitative relationship, but also a stronger 
(and inherently circular) definition of 
the concepts (mass, force, acceleration) 
that it relates. This was not just a matter 
of refining dictionary definitions, but a 
fundamental recasting of the relational 
cognitive map of the natural world, with 
profound practical consequences. (The 
same was true for those who followed 
Newton, refining that map.)

These three things are inter-related:
 ■ System configuration space—the space 
described by the degrees of freedom 
of conceivable systems, in which 
each point represents one system 
configuration (Figure 6)

 ■ Relational models, constraining those 
same degrees of freedom with respect 
to each other, often mathematical or 
other relational models (including 
various types of information models)

 ■ Semantic “meaning” expressed in the 
form of relationships

Figure 6, representing a subspace of 
system configuration space, is not the 
same as the equations, words, or model 
views (for example, SysML) that might be 
used to describe the set of instance points 
within it. This is an important reminder 
that a view of a model is not a direct view 
of the configuration space it describes, but 
instead a compressed representation of 
constraints that define such a configuration 
space — just as Descartes noted that 
viewing an algebraic equation is not the 
same as viewing the geometric space it 
describes — and both have their place. 
(Note that system models describe both 
discrete and continuous degrees of 
freedom, as shown in Figure 6.)

What we usually refer to as “modelling 
languages” (for example, mathematical 
languages, database modelling languag-
es, systems modelling languages) are not 
themselves the semantics of the spaces 
they will be used to describe. The descrip-
tion of English as a language does not 
itself describe the struggles of Hamlet that 
Shakespeare encoded using English.

However, we know that architectural 
patterns, expressed in those modelling 
languages, can be used to describe the 
semantics of train systems or manufactur-
ing processes. That is, the semantics of a 
lower-level language can be used to encode 
the semantics of a higher level “language,” 
formalizing the latter (Schindel 2011b). 
Semantic models of systems engineering 
occur at different levels of abstraction. The 
following example list proceeds from more 
specific to more abstract cases:

1. Model of a specific automobile instance, 
configured as sought by its owner

 ■ Example of use: Represents whether 
cruise control option is equipped

2. Model of a product line of automobiles, 
optimized by designers and planners 
(ISO26550 2013)

 ■ Example of use: Defines which automo-
bile models allow cruise control option

3. Architectural framework model (ISO 
42010 2011) of consumer automobiles, 
shared across suppliers active in the 
automotive domain

 ■ Example of use: Defines semantics, 
behavior of “cruise control feature”

4. Metamodel of a specific system mod-
elling language, semantically capable 
of expressing concepts appropriate to 
its intended use, along with syntax and 
views specific to that language

 ■ Example of use: Defines how stakehold-
er features will appear in model views

5. Metamodel of concepts sufficient for 
the purposes of systems engineering or 
science, independent of the modelling 
languages that will express them in 
specific cases.

 ■ Example of use: Defines the semantics 
of “stakeholder feature”

The entire configuration “system DNA” 
of a given system configuration or series of 
life cycle configurations can practically be 
captured by properly configured modelling, 
product lifecycle management (PLM), or 
other tools, as further illustrated in Schin-
del, Lewis, Sherey, and Sanyal (2015).

The dimensionality of this configuration 
space is high, so we don’t typically view the 
whole space at one time, preferring instead 
to view sub-spaces. Figure 7 is a simple 
example.

The constraints that result in the curve of 
Figure 7 remind us that a further compres-
sion of configuration instance information 
is provided by modelled relationships:
• Mathematical equations (couplings, 

dependencies)
• Information models (E-R, SysML, IDEF, 

etc.)
• Requirements statements, viewed as 

transfer functions (Schindel 2005b).

Moreover, pattern-based systems engi-
neering (PBSE) methods permit even fur-
ther compression of these views (Schindel 
2011b) — layers of compression are likewise 
possible. Most of the sub-space relation-
ships are not linear, so certain ideas such as 
linear combinations and frequency domain 
transfer functions won’t apply in the linear 
sense. However, other geometric aspects, 
such as distance norms and projections, do 
still apply. Of course, we’d likely add many 
more degrees of freedom (weight, range, 
etc.) — so system maps will tend to be high 
dimension, and subject to “slicing” into 
multiple views. During innovation / de-
velopment cycles, and some life cycles, the 
“current configuration” may involve sets of 
ranges or lists, instead of individual points, 
so the trajectory becomes an ordered series 
of envelopes.

MOVING TO A STRONGER SEMANTIC MODEL 
OF SYSTEM CONFIGURATION SPACE

What are the degrees of freedom 
(relatable variables) needed by system 
models to describe system space? Do 
system modeling languages (SysML, OPM, 
IDEF, etc.) answer this? Some thought 

X1 = f (X2, X3) X = g (Y, Z)

Figure 6. System configuration (degrees of freedom) space, constrained by (discrete 
and continuous) modeled relationships representing semantics, laws, designs

Figure 7. A simple sub-space of 
configuration space
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leaders (Long 2014a and 2014b) agree 
that such languages are more syntactical 
or view-oriented than about underlying 
semantics, with none of them currently 
providing a complete semantic model of 
the systems they describe. Based on the 
above arguments, it is perhaps too much 
to expect that they should, because they 
are intended to provide views into such 
an underlying system configuration space. 
Nevertheless, many of the ideas described 
in these modeling languages and other 
frameworks (for example, OMG 2012 
and ISO 10303 U’Ren 2003) do cover a 
significant part of the territory. Along 
with a language description, modeling 
language specifications typically include 
an effort to describe the underlying system 
configuration space (even if entangled 
a bit in the description of the modeling 
language), for lack of a pre-existing 
community agreement on that underlying 
space.

In the spirit of the physical sciences, 
we therefore have asked “What is the 
smallest model of a system?” for effective 
descriptions in the work of engineering and 
science, and independent of any specific 
modeling language. Pursued over a number 
of years and tests, this work showed that 
contemporary system models are often 
both semantically too big (redundant) and 
too small (missing important information), 
at the same time (Schindel 2011b).

In our practice with others across 
multiple system domains (Schindel and 
Smith 2002, Bradley et al. 2010, Schindel 
2012b, Berg 2014), this led over several 
decades to a formal model of the semantics 
of the underlying system space, referred to 
as the S*Metamodel. Figure 8 illustrates a 
key subset summary of the longer formal 
S*Metamodel specification (ICTT 2009 
and 2013).

Formal mappings (profiles) of the 
S*Metamodel have been created for a 

number of existing third-party COTS 
modeling tools, engineering databases, 
PLM systems, and standards-based 
language offerings. These increase the 
power of the existing industry assets by 
strengthening their expressive power and 
semantic compatibility, in comparison to 
simple data exchange interfaces (Schindel, 
Lewis, Sherey, Sanyal 2015). These systems 
and their users are enabled to represent and 
understand systems in S*Space.

Further Evidence of the Need
Why is such a transition in thought and 

practice important? An ancient navigator 
would not have been in a position to artic-
ulate the need for a map in the same terms 
we would use today, so today’s systems nav-
igators may face the same kind of barriers 
to visions of the future.

Further evidence is here offered in three 
areas:

1. System interactions: One reference is 
the history of improvement of human 
life during the last three hundred 
years, driven by the fruits of science 
and engineering as they explicated 
and harvested deeper understanding 
of nature. A prime connection 
of systems and that history is the 
central role of physical interactions 
as the basis of all scientific laws in 
the physical sciences, discovered, 
expressed, and exploited over those 
three centuries to improve human life. 
We assert that physical interactions 
between parts are likewise the 
foundational perspective of the 
science and engineering of systems. 
Interactions accordingly play a central 
part in the S*Metamodel (Schindel 
2013a). However, these interactions 
are not necessarily recognized in the 
same way by contemporary system 
modeling languages and tools or are 
in other cases merely tolerated by 

them.
2. System failures: Human engineered 

systems have purpose, at the risk of 
failure in that purpose. Analysis of 
failure modes and effects (FMEA, 
FMECA, etc.) and other forms of 
risk analysis are central to systems 
engineering and are likewise funda-
mental to the S*Space described by 
the S*Metamodel (Schindel 2010). 
Purpose is not an add-on, and neither 
is failure in that purpose.

3. System requirements: Systems 
engineers know that requirements 
are important, but they are most 
frequently conceived as the prose 
statements used to represent them to 
humans. Efforts by the suppliers of 
engineering tools and databases have 
brought forth databases and later 
models that incorporate and link to 
and among these textual structures. 
However, these text representations 
are the “prose equations” of the 
non-linear extension of transfer 
functions (Schindel 2005), even if 
not recognized as such. Imagine an 
engineering world in which math-
ematical equations were viewed as 
being primarily the strings of text 
that represent them. Accordingly, the 
related transfer function abstraction 
is fundamental to the S*Metamodel’s 
integration of requirements.

Information vs. Process: Re-Integrating 
Systems Engineering Maps and Itineraries

Once a stronger semantic model of 
system space is in hand, its re-integration 
with systems processes and procedures 
is possible. We have found this has good 
positive impact on the traditional pro-
cedures with which we re-integrate that 
systems space, making those processes and 
procedures more effective while respecting 
their historical roots and values.
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Abstract. How we represent systems is fundamental to the history of mathematics, science 
and engineering. Model-based engineering methods shift the nature of representation of 
systems from historical prose forms to explicit data structures more directly compatable 
to those of science and mathematics. However, using models does not guarantee simpler  
representation—indeed a typical fear voiced about models is that they may be too complex.

Minimality of system representations is of both theoretical and practical interest. The 
mathematical and scientific innterest is that the size of a system’s “minimal representation” 
is one definition of its complexity. The practical engineering interest is that the size 
and redundancy of engineering specifications challenge the effectiveness of systems 
engineering processes. INCOSE thought leaders have asked how systems work can be 
made 10:1 simpler to attract a 10:1 larger global community of practitioners. And so, we 
ask: What is the smallest model of a system?

Figure 8. What Is the smallest model of a system?
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Figure 9. Process versus information

For example, we have created formal 
models of the ISO15288 processes, 
integrating with that well-known framework 
while giving new insight and power to 
its implementation. Figure 9 summarizes 
the notion that this paper began with: the 
systems engineering process (summarized 
at the top of Figure 9 by ISO 15288 process 
areas) consumes and produces information. 
By using a stronger semantic model of that 
information (S*Metamodel summarized at 
the bottom of Figure 9), we strengthened 
each of the systems engineering processes 
that consume and produce that information.

A part of that strengthening was to 
introduce into those systems engineering 
process models not only the option for 
MBSE models of target systems and their 
views, but the further notion that these 
models can be constructed from mod-
el-based S*Patterns. This is discussed in the 
next section.

Trajectories, Persistent Memories Patterns: 
Roads Already Travelled

System configuration trajectories (Figure 
9 lower right) are not just important during 
development of a single system generation.  
Across the life cycles of multiple systems, 
we have the splitting evolution of systems 
that emerge as responses to their environ-
ments. What is the configuration space 

for these evolving systems across multiple 
family life cycles (Figure 10)?

The same underlying S*Metamodel, 
along with the “System of Innovation 
Pattern” (Beihoff and Schindel 2012 
and Schindel 2013b) supports all these, 
including more specialized system family, 
product line, or architectural patterns and 
frameworks (Fig. 11). In addition to our 
own firm’s work in pattern-based systems 
engineering (PBSE) over several decades, 
PBSE based on these S*Patterns is also be-
ing pursued and practiced by the Patterns 
Challenge Team of the INCOSE/OMG 
MBSE initiative (INCOSE Patterns Team 
2014), and the subject of several related 
IS2015 papers (Cook and Schindel 2014; 
Nolan, Pickard, Russell, and Schindel 2015; 
Peterson and Schindel 2015; Schindel, 
Lewis, Sherey, and Sanyal 2015).

When persistent memory of configurable 

re-usable S*Models are pursued as S*Pat-
terns, where we have integrated it into the 
ISO 15288 process model, emerging themes 
include:

1. Centrality of patterns to science 
and engineering: Although discov-
ery of patterns may be argued to sit 
at the heart of the physical sciences, 
in PBSE they likewise become the 
heart of engineering and innovation. 
Indeed, we argue in Beihoff and 
Schindel (2012) that “accumulation of 
experience” is a key constituent of the 
system of innovation, and formal-
izing it in patterns implements this. 
Patterns, as the basis for engineered 
platforms and product lines, become 
the equivalent of theoretical frame-
works and paradigms in science.

2. Intellectual assets: After several 
decades of investment in computer 
software, the Financial Accounting 
Standards Board (FASB) formally 
recognized accounting for that 
investment on a capitalized asset 
basis, joining “bricks and mortar” as a 
financial asset. Since that time, annual 
U.S. investment in intangible assets 
has grown to exceed investment in 
tangibles. The model-based economy 
is arriving. S*Patterns satisfy the 
criteria of being a form of software, 
eligible for that capitalization of 
investment in systems IP (Schindel 
2007 and Sherey 2006)

3. Process patterns: The systems 
engineering process, or the larger 
innovation process,  are themselves 

Figure 10. Evolving systems, over multiple life cycles
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systems, and may be modeled as 
such (Beihoff and Schindel 2012; 
Schindel 2013b; Schindel, Ahmed, 
Hanson, Peffers, Kline 2011). 
Accordingly, there are also S*Pattern 
representations for these systems, as 
we have created for ISO 15288.

Beginning at the INCOSE IW2015 
MBSE workshop, we will examine the agile 
systems representation in this model-based 
framework (Dove and Schindel 2015).

CONCLUSIONS, IMPLICATIONS AND FUTURE 
WORK

1. We assert, and have offered argument 
and evidence above, that the MBSE 
model-centric vision expressed by 
INCOSE Vision 2025 will require 
progress in shared understanding 
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Figure 11: Evolving families of systems, pattern-based systems engineering (PBSE)

of the underlying semantic model 
of system space, and that this will 
be needed independent of specific 
modelling language/modelling view 
semantics, even when they are them-
selves standards-based. Indeed, these 
languages and systems can them-
selves build upon and gain from such 
a shared underlying semantic model.

2. Current procedure-based systems 
engineering and innovation process-
es can be made more effective by 
increasing the focus on underlying 
information vs. procedure, without 
abandoning the value of procedural 
foundations, and with these impacts:

• Knowing “where you are, not just 
what you are doing”

• Simplification, while speeding and 
improving outcomes

• Improved ability to understand, 
think critically about, represent, and 
communicate

• “the current situations” in projects, 
coupled with more effective risk 
management (Schindel 2011c)

• Increased agility of the overall 
System of Innovation (Dove and 
LaBarge 2014)

• Availability of an MBSE model of 
ISO 15288, incorporating PBSE 
options

• Improved capabilities for even the 
currently available generation of 
automated aids, modelling tools, and 
PLM systems

• Realizing more of INCOSE Vision 
2025. 
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INTRODUCTION

 ABSTRACT
Engineering disciplines (civil, mechanical, chemical, electrical) sometimes argue their fields have “real physical phenomena”, 
“hard science” based laws, and first principles, claiming systems engineering lacks equivalent phenomenological foundation. We 
argue the opposite, and how replanting systems engineering in model-based systems engineering (MBSE) / pattern-based systems 
engineering (PBSE) supports emergence of new hard sciences and phenomena-based domain disciplines.
 Supporting this perspective is the system phenomenon, wellspring of engineering opportunities and challenges. Governed 
by Hamilton’s principle, it is a traditional path for derivation of equations of motion or physical laws of so-called “fundamental” 
physical phenomena of mechanics, electromagnetics, chemistry, and thermodynamics. 
 We argue that laws and phenomena of traditional disciplines are less fundamental than the system phenomenon from which 
they spring. This is a practical reminder of emerging higher disciplines, with phenomena, first principles, and physical laws. 
Contemporary examples include ground vehicles, aircraft, marine vessels, and biochemical networks; ahead are health care, 
distribution networks, market systems, ecologies, and the IoT.

Bill Schindel. schindel@ictt.com
Copyright © 2015 by Bill Schindel.  Published and used by INCOSE with permission. 

[Editor: This paper for systems engineering foundations refers to the Systems Engineering Vision 2025 (Copyright 2014 by the 
International Council on Systems Engineering).]

Got Phenomena? 
Science-Based 
Disciplines for Emerging 
Systems Challenges

As a formal body of knowledge 
and practice, systems engineer-
ing is much younger than the 
more established engineering 

disciplines, such as civil, mechanical, chem-
ical, and electrical engineering. Comparing 
their underlying scientific foundations to 
some equivalent in systems engineering 
sometimes arises as a dispute, concerning 
whose profession is “real” engineering 
based on (or at least later explained by) 
hard science, with tangible physical phe-
nomena, and accompanied by physical laws 
and first principles.  This paper argues for a 
different perspective altogether (Figure 1), 
and the reader exploring this paper is 
warned to avoid the trap of the seemingly 

familiar in parsing the message.
Beyond that argument, this paper 

addresses a more pragmatic goal — the 
means of identifying and representing the 
tangible physical phenomena that emerge 

in new system domains, along with their 
respective physical laws and first princi-
ples. This is of more than philosophical 
or professional significance. Challenged 
by numerous issues in emerging systems, 
society has an interest in organizing 
successful approaches to the scientific 
understanding of laws and first principles 
about, and engineering harnessing of, the 
related phenomena. Individuals entering 
or navigating the technical professions 
likewise have personal interests in this 
evolving roadmap.

While recognizing the formidable works 
of systems theorists in these still early 
days of systems engineering (Ashby 1956, 
Bertalanffy 1969, Braha et al. 2006, Cowan 

Figure 1. En garde! Not what you may be 
expecting

Systems Engineering

Traditional Engineering
Disciplines

Emerging Engineering
Disciplines

Traditional Engineering
Disciplines

Systems Engineering
Disciplines

(b)   The perspective argued
 by this paper

Traditional Physical Phenomena The System Phenomenon

(a)   Not the perspective of 
this paper, but a common view
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et al. 1994, Holland 1998, Prigogine 1980, 
Warfield 2006, Wymore 1993), this paper 
focuses on even earlier contributions of 
science and mathematics to the flowering 
of engineering’s impact over the last three 
centuries. We will extract the “system phe-
nomenon” at the center of that foundation 
and consider its impacts and implications 
for systems engineering practice. This 
perspective helps us understand the phase 
change that systems engineering is going 
through, as model-based representations 
enable the framework that has already had 
profound impact in the traditional science/
engineering paired disciplines.

Section 2 of this paper reminds us of the 
“phase change” that occurred in science, 
technology, engineering, and mathematics 
(STEM) approximately 300 years earlier, 
when means of representation advanced, 
and argues efficacy from the pragmatic 
perspective of the dramatic impacts on 
human life. Section 3 argues that we are 
now in the early days (when trends can still 
be confusing) of a similar phase change 
in the STEM of general systems. Section 4 
provides the main argument, introduces 
the system phenomenon, and asserts that 
it is not only the hard physical phenomena 
basis for systems engineering, but surpris-
ingly also for all the traditional disciplines’ 
phenomena, reversing the “who’s got real 
phenomena?” argument. This section also 
suggests the means of identifying and rep-
resenting the tangible physical phenomena 
emergent at all levels, and their respective 
physical laws and first principles. Section 5 
returns to the subject of current trends in 
systems engineering, the need to strengthen 
its foundation, and the opportunity to use 
model representation of the system phe-
nomenon to that end. Section 6 concludes 
with implications for action.

PHASE CHANGE EVIDENCE: EFFICACY OF 
HARD SCIENCE, PHENOMENA-BASED, STEM 
DISCIPLINES
Science, Technology, Engineering, and 
Mathematics —300 Years of Impact

Our pragmatic argument is based 
on assessing the impact of the physical 
sciences and mathematics on engineering 
by their joint efficacy in improving the 
human condition. In a matter of 300 years 
(from around Newton), the accelerating 
emergence of STEM has lifted the possi-
bility, quality, and length of life for a large 
portion of humanity, while dramatically 
increasing human future potential (Mokyr 
2009, Morris 2012, Rogers 2003). Among 
the measures of this impact are Figures 2, 3, 
and 4. By the close of the twentieth century, 
the learning and impacts of STEM along 
with other factors (for example, market 
capitalism as a driver of prosperity, as in 
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Friedman (1980)) were increasingly recog-
nized as critical to individual and collective 
human prosperity.

During that same period, the human-
populated world has become vastly 
more interconnected, complex, and 
challenging. New opportunities and 
threats have emerged, in part out of less 
positive impacts of human applications 
of STEM. Understanding and harnessing 
the possibilities have become even more 
important than before, from the smallest 
known constituents of matter and life, to 
the largest scale complexities of networks, 
economies, the natural environment, and 
living systems. Figure 5 illustrates other 
parameters of these impacts.

Because we argue here from the effi-
cacy shift as STEM advanced, one might 
question how much other causes (for 
example, market capitalism as noted above) 
accounted for these advances. To remem-
ber that these shifts were more than just 
correlations in time, Table 1 reminds us of 
some of the more familiar and yet dramatic 
STEM-based advances associated with the 
above impacts:

“Phase Changes”: Emergence of Science 
and Engineering as Phenomena-Based 
Disciplines 

Over those three centuries, the “hard 
sciences”, along with the engineering 
disciplines and technologies based on those 
sciences, are credited with much of this 
amazing societal progress, as well as some 
related challenges (Mokyr 2009, Morris 
2012, Rogers 2003). Our point here is the 
enormous impact of these “traditional” (at 
least, over 300 short years) disciplines, as 
their foundations emerged in understand-
ing of physical phenomena and related 
predictive and explanatory models.

How can the foundational roots of 
systems engineering be compared to 
engineering disciplines already seen as 
based on the “hard sciences?” As illustrated 
in Table 2, the traditional engineering 
disciplines have their technical bases and 
quantitative foundations in what emerged 
as physical sciences about what came to be 
understood as physical phenomena.

It wasn’t always this way, as seen from the 
shift that began to occur just three centuries 
ago. It is informative to remember the 
“phase changes” that occurred in what are 
now considered the traditional disciplines, 
by recalling the history of physics before 
Newton, chemistry before Lavoisier & 
Mendeleev, and electrical science before 
Faraday, Hertz, and Maxwell, versus what 
followed for each (Cardwell 1971, Forbes 
et al. 2014, Pauling 1960, Servos 1996, 
Westfall 1980). All of these domains had 
earlier, less effective, bodies of thought, 

generated by those attempting to answer 
questions and, in some cases, provide 
practical benefits. Instead of dismissing 
alchemy, astrology, pre-Copernican 
cosmology, and their counterparts, 
we can instead see them as grappling 
with phenomena without the benefit of 
sufficiently powerful mathematics and the 
verification mechanisms of experiment and 
refutation to test against reality what we 
would now call models.

SYSTEMS ENGINEERING IS STILL YOUNG  
Contemporary specialists in individual 

engineering disciplines (for example, 
civil, mechanical, chemical, electrical) 
sometimes argue that their fields are based 
on “real physical phenomena”, founded on 
physical laws based in the “hard sciences” 
and first principles. One sometimes hears 
claims that systems engineering lacks the 
equivalent phenomena-based theoretical 
foundations. In that telling, systems 
engineering is instead critically portrayed 
as emphasizing (1) process and procedure, 
(2) critical and systems thinking and good 
writing skills, and (3) organizing and 
accounting for information and risk in 
particular ways —valuable, but not as based 
on an underlying “hard science”.

That view is perhaps understandable, 
given the initial trajectory of the first 50 
years of systems engineering (Adcock 
2015, Checkland 1981, Walden et al. 2015, 
Wymore 1977). “Science” or “phenomenon” 
of generalized systems have for the most 
part been described on an intuitive or 
qualitative basis, with limited reference 
to a “physical phenomenon” that might 
be called the basis of systems science 
and systems engineering. Some systemic 
phenomena (for example, requisite variety, 
emergence of structure, complexity, chaos 
theory, etc.) have received attention, but it 
is challenging to argue that these insights 
have had as great an impact (yet) on the 
human condition and engineering practice 
as the broader STEM illustrations cited 
above for the most recent three centuries 
of physical sciences and mathematics. 
However, INCOSE’s own stated vision 
(Beihoff et al. 2014) calls upon systems 
engineering for such a result. 

Respectful of the contributions of those 
early thinkers in systems engineering, we 
also note that their contributions can in 
some cases be expressed as manifesta-
tions of the modeled system phenomenon 
described below, advancing the scientific 
foundations of systems engineering. 

Table 1. STEM drivers that contributed to the above impacts

Impact Notable STEM Drivers (sample only)

Increased life expectancy
Life sciences, nutritional science

Reduced infant mortality

Reduced cost of food 
production

Agronomy, herbicides, fertilizers, 
mechanization

Increased GDP per capita Mechanized production, mechanized 
distribution

Increased range of travel Vehicular, civil, and aerospace engineering

Increased traffic fatalities Vehicular engineering, civil engineering

Increased carbon emissions Vehicular engineering; mechanized 
production

Table 2. Phenomenon-based disciplines

Engineering 
Discipline Phenomena Scientific 

Foundations
Representative 
Scientific Laws

Mechanical 
Engineering

Mechanical 
Phenomena

Physics, Mechanics, 
Mathematics, . . . 

Newton’s Laws, 
others

Chemical 
Engineering

Chemical 
Phenomena

Chemistry, 
Mathematics, . . . 

Periodic Table, 
others

Electrical 
Engineering

Electromagnetic 
Phenomena

Electromagnetic 
Theory

Maxwell’s 
Equations, others 

Civil 
Engineering

Structural 
Phenomena

Materials Science, 
. . . 

Hooke’s Law, 
others
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MBSE, PBSE: Enabling a Phase Change in 
Systems Engineering

In the case of systems engineering, a 
key part of the story is that the role that 
quantitative system models have played, or 
not played, during its initial history. Most 
recently, the broader INCOSE-encouraged 
role for model-based methods offers to 
eventually accelerate the “phase change” 
that the successful earlier history of science, 
mathematics, and other engineering disci-
plines suggest is now in progress.

Models are certainly not new to seg-
ments of engineering practice. However, we 
are representing an increasingly fraction 
of our overall understanding of systems, 
from stakeholder trade space, to required 
functionality and performance, to design, 
and to risk, using explicit and increasingly 
integrated system models. As in Newton’s 
Day, this also puts pressure on the ap-
proaches to model representations, in order 
that they effectively represent, conveying 
enough, and not too much, about the key 
ideas concerning the real things they are 
intended to describe.

The progress of physical sciences did 
not arise from models that only could 
describe single unique instances of systems, 
but instead represented what came to be 
understood as more general patterns that 
recur across broad families of systems. 
Likewise, there is an increasing effort in 
systems engineering to recognize that these 
models must often describe patterns of 
similarity and variation. This recognition of 
recurring patterns is necessary both from 
the perspectives of science and economics. 
The increasing use of explicit model-based 
patterns in these representations is a part 
of this phase change (INCOSE Patterns 
WG 2015, INCOSE MBSE Initiative 2015). 
Pattern-based systems engineering (PBSE) 
as an extension of model-based systems 
engineering (MBSE) increases emphasis on 
representation.

This is a more significant change than 
just the emergence of standards for systems 
modeling languages and information tech-
nology (IT) toolsets, even though those are 
valuable steps. We need underlying model 
structures that are strong enough — re-
member physics before the calculus of 
Newton and Leibniz. As a test of “strong 
enough,” we suggest the ability to have the 
kinds of impact on humankind summa-
rized in Section 2 — beginning with clearer 
focus on what phenomena were being 
represented.

Although this challenge sounds sobering, 
we will next argue that it is not necessary 
for emerging systems models to “start from 
scratch” in their search for new system phe-
nomena, and further argue that what is al-
ready known from the earlier phase change 

of Section 2 helps suggest what aspects of 
our systems models need to be strength-
ened during the phase change in systems 
engineering. PBSE further reminds us of a 
practical lesson from the STEM revolution. 
Once validated patterns emerge, we (most-
ly) need to learn and apply those patterns 
(laws, principles), not how to re-derive 
them from earlier knowledge. Examples 
include the periodic table and the gas laws. 
While it may be controversial, “learn the 
model, not modeling” is advice worth 
considering, in a time when modeling from 
scratch seems carry more excitement.

THE SYSTEM PHENOMENON
The perspective used in this paper defines 

a system as a collecting of interacting 
components, where interactions involve 
the exchange of energy, force, mass, or 
information, through which one component 
impacts the state of another component, 
and in which the state of a component 
impacts its behaviour in future interactions 
(Schindel 2011).

In this framework, all behaviour is 
expressed through physical interactions 
(Figure 6). This perspective emphasizes 
physical interactions as the context in 
which all the laws of the hard sciences are 
expressed (Schindel 2013a).

action integral, based on the Lagrang-
ian L of the combined system:

4. The behavioural characteristics of 
each interacting component in (1) 
above are in turn determined by its 
internal (“subsystem”) components, 
themselves interacting.

Reduced to simplest forms, the result-
ing equations of motion (or if not known 
or solvable, empirically observed paths) 
provide “physical laws” (or recurring 
observable behaviors) subject to scientific 
verification.

Instead of systems engineering lacking 
the kind of theoretical foundation that the 
“hard sciences” bring to other engineering 
disciplines, we therefore assert that:

 ■ It turns out that all those other engi-
neering disciplines’ foundations are 
themselves dependent upon the system 
phenomenon and emerge from it.

 ■ The related underlying math and 
science of systems (dating to at least 
Hamilton) provides the theoretical basis 
already used by all the hard sciences 
and their respective engineering 
disciplines.

 ■ It is not systems engineering that lacks 
its own foundation—instead, it has 
been providing the foundation for the 
other disciplines! (Refer to Figure 1.)

Historical Domain Example 1: Chemistry 
Chemists, and chemical engineers, justi-

fiably consider their disciplines to be based 
on the “hard phenomena” of chemistry 
(Pauling 1960, Servos 1996):

 ■ This perspective emerged from the 
scientific discovery and verification of 
phenomena and laws of chemistry.

 ■ Prominent among these was the 
discovery of the individual chemical 
elements and their chemical properties, 
organized by the discovered patterns of 
the periodic table.

 ■ Emerging understanding of related phe-
nomena and behaviours included those 
of chemical bonds, chemical reactions, 
reaction rates, chemical energy, and 
conservation of mass and energy.

 ■ Upon that structure grew further 
understanding of chemical compounds 
and their properties.

Even though these chemical phenomena 
and laws seemed very fundamental:

 ■ All those chemical properties and 
behaviors are emergent consequences of 
interactions that occur between atoms’ 
orbiting electrons (or their quantum 

S[X] =
B

A
L(X, X, t)dt

External
“Actors”

System

System
Component

Figure 6. The system perspective

The traditional “phenomena” of the 
hard sciences are all cases of the following 
system phenomenon:

1. Each component has a specific 
behaviour during a given interaction 
type, determined by the component’s 
state. (See (4) below for the source of 
that component’s behavioural charac-
teristics.)

2. The combined behaviours of the set 
of interacting components deter-
mine a combined system state space 
trajectory.

3. That trajectory is a collective property 
of the system components and inter-
action, and accordingly is not simply 
the description of possible behaviors 
of the individual components.  For 
the systems discussed in this paper, 
by Hamilton’s Principle (Levi 2014, 
Sussman et al. 2001, Hankins 2004), 
the emergent interaction-based 
behavior of the larger system is a 
“stationary” trajectory X = X(t) of the 
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equivalents), along with limited proper-
ties (for example, atomic weights) of the 
rest of the atoms they orbit.

 ■ These lower-level interactions give rise 
to the visible higher level chemical 
behaviour patterns that have their own 
higher level properties and relation-
ships, expressed as “hard science” laws 
of chemistry.

So, we see that this illustrates:
 ■ The “fundamental phenomena” of 
chemistry, along with the scientifically 
discovered / verified “fundamental laws 
/ first principles” are in fact . . .

 ■ Higher level emergent system patterns 
and . . .

 ■ chemistry and chemical engineering 
study and apply those system patterns.

Historical Domain Example 2: The Gas 
Laws and Fluid Flow

Illustrated by Figure 8, the discovered 
and verified laws of gases and of compress-
ible and incompressible fluid flow by Boyle, 
Avogadro, Charles, Gay-Lussac, Bernoulli, 
and others are rightly viewed as fundamen-
tal to science and engineering disciplines 
(Cardwell 1971).

However, all those fluid and gaseous 
properties and behaviors are emergent 

consequences of interactions that occur 
between atoms or molecules, the containers 
they occupy, and their external thermal 
environment. These lower-level interactions 
give rise to patterns that have their own 
higher-level properties and relationships, 
expressed as “hard sciences” laws. So, 
the “fundamental phenomena” of gases, 
along with the scientifically discovered 
and verified “fundamental laws and first 
principles” are in fact higher level emergent 
system patterns. And so, mechanical 
engineers, thermodynamicists, and 
aerospace engineers can study and apply 
these system patterns.

Examples from More Recent History 
The practical point of this paper is to 

emphasize the constant emergence of new 
scientific and engineering disciplines, in 
domains arising from higher level system 
interactions. These include domains that 
have been important to society, even 
though they arose later than the more 
fundamental domains from which they 
spring. The discovery and exploitation of 
these higher-level phenomena, principles, 
and laws is important to future progress 
and innovation, including enterprises, 
careers of individuals, and society.

These more recent emergent domains, in 

which formal system patterns are being rec-
ognized as describing higher-level phenom-
ena and laws, are illustrated by examples of 
Figure 9:

1. Ground vehicles: As in the dynamical 
laws of vehicle stability that enable 
vehicular stability controls (Guiggiani 
2014).

2. Aircraft: Including the dynamical 
laws at the aircraft level that enable 
advanced aircraft design for dynam-
ic performance and top-level flight 
controls (Pratt 2000).  

3. Marine vessels: Facilitating the 
design of more efficient hulls and 
special purpose craft, as well as bulk 
transports (Perez et al 2007).

4. Biological regulatory networks: 
Advancing our understanding of im-
mune reactions and other regulatory 
paths in connection with pathologies 
as well as therapies (Gene Regulation 
Wikipedia).

For example, in the case of ground 
vehicles, dynamical laws of vehicle stability 
arise from the interactions, modulated 
through control algorithms, of the 
distributed mass of the vehicle in motion 
with the driving surface, transmitted 

Figure 7. Chemical interactions, phenomena, principles

Increased fluid speed,
decreased internal pressure.

The often cited example of the
Bernoulli Equation or “Bernoulli
Effect” is the reduction in pressure
which occurs when the fluid speed
increases.
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Figure 8. Gas, fluid interactions, phenomena, principles
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through tractional forces of braking, acceleration, or steering, 
as further impacted by road surface and tire conditions, along 
with other factors. It is the overall system interaction of all these 
domain elements that leads to emergent vehicular laws of motion.

Students of complexity (Cowan et al. 1994) will note that 
nonlinearity, the onset of chaos, and extreme interdependencies 
are not reasons to avoid representing the interactions manifesting 
that behaviour. Indeed, they provide further reasons to under-
stand those very interactions.

Future Applications
Examples (Figure 10) that call out for improved future efficacy 

in systems engineering include:

1. Utility and other distribution networks: Society has come 
to depend on rapidly evolving, often global, networks for 
distribution of goods and services, in the form of materials, 
energy, communication, and information services. What 
are the network-level phenomena, laws, and principles of 
these networks, bearing on their effectiveness and resiliency 
(Perez-Arriaaga et al. 2013)?

2. Market systems, economies, and human-imposed regulato-
ry frameworks: These systems clearly have direct impact on 
society and individuals. The “designed” systems of top-
down regulation imposed upon them include such promi-
nent examples as regulation of banking, securities markets, 
development of medical devices and compounds, and 
delivery of health care. What are the system-level phenom-
ena, laws, and principles of these systems, bearing on their 
effectiveness and resiliency (Friedman 1980)?

3. Living ecologies: The emergent habitats of living things 
include rain forests, coral reefs, the human microbiome, and 

the biosphere as a whole. These demonstrate characteristics 
that include regulatory stability within limits, along with pa-
thologies. What are the system-level phenomena, laws, and 
principles of these systems (MacArthur and Wilson 2001).

4. Health care delivery: These systems, including a number of 
important challenges, are much in the public eye. The very 
definition of effective health care is necessarily dynamic 
because of the evolving frontiers of medical science. The 
means of effectively delivering care, financing its costs, and 
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(Hippocratically) protecting patients from harm are 
all subject of study as to system-level phenomena 
and principles (Holdren et al. 2014).

5. Product development, general innovation, and 
related agility: This system domain is the “home 
court” of INCOSE and our systems engineering 
profession. While there is a large body of descrip-
tions of the related systems, the study of these sys-
tems as modelled technical systems is mostly new 
or in the future. One such project is the INCOSE 
agile systems engineering life cycle model project 
(Braha et al. 2007, Schindel 2015, Schindel and 
Dove 2016, Hoffman 2015).

STRENGTHENING THE FOUNDATIONS OF MBSE
Like mechanics before Newton, the models of MBSE 

require a strengthened underlying framework to effec-
tively describe the system phenomenon in the domains 
of practice. MBSE requires a strong enough underlying 
metamodel to support a phenomenon-based systems 
science.

As discussed in Schindel (2013a), interactions play 
a central role in that framework, inspired by Hamilton 
and three hundred years of pioneers in the emergence of 
science and engineering. Interactions are acknowledged 
by and can be modelled in some current system mod-
elling frameworks, but typical practice and underlying 
structures need related improvement. Figure 11 illustrates 
a related, interaction-centric, extract from the S*Meta-
model (Schindel 2011).

An Illustration of Related Systems Engineering Impact: Design Review
As an example of the beneficial impact of this interaction-centric 

view of systems engineering, consider design review, where the system 
phenomenon appears front and center. Figure 12 is an extract from a 
guide to such a review in an MBSE setting (Schindel 2007). This diagram 
summarizes six questions relevant to reviewing whether a proposed system 
design will satisfy a set of technical requirements. Note Question 2, which 
compares the behaviour that emerges from interaction of its “white box” 
subsystems to the desired behaviour expressed by the system’s “black box 
requirements.”
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Figure 11. Summary view of S*Metamodel

This is something more than model semantics or 
ontology alone. It also means recognizing that the models 
we pursue are models of the real physical systems they are 
about, and not just models of information about busi-
ness processes concerned with those systems. While that 
might seem obvious to the physical scientist, a differ-
ent perspective than that is embedded in forty years of 
enterprise information system practice. In that history, 
the traditional (and relatively successful) paradigm is 
construction of information models that describe infor-
mation transactions or documents (for example, purchase 
of air travel tickets). Symptomatic of that paradigm, today 
we still encounter MBSE models and human interpreta-
tions of them that include notions of databases, “calls,” 
“methods,” and other successful software notions that are 
not the same as modelling physical systems. Executable 
models add to this challenge. In the midst of this phase 
change, we live in interesting times.
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Figure 12. Related extract from MBSE design review guide

Whether viewed as composition (bottom up, emergence) or 
decomposition (top down), the ability to effectively answer Question 2 
above is central to the design or design review process. Question 2 is about 
Hamilton’s Principle in a specific domain setting. A verified library of 
knowledge of the related emergence or decomposition patterns that apply 
in an enterprises’ or industry’s or society’s domains can be valuable. The 
capture and verification of such a library can be seen to be a form of system 
science in the tradition of the domain-specific hard sciences—whether the 
domain is lower level or high-level systems discussed above.

CONCLUSIONS AND IMPLICATIONS FOR FUTURE ACTION
1. Like the other engineering disciplines, systems engineering can 

be viewed as founded on “real” physical phenomena—the system 
phenomenon—for which experimentally verified, mathematically 
modeled hard science, laws, and first principles have existed for 150 
years, dating to Hamilton, or earlier, to Newton.

2. Systems engineering not only has its own phenomenon, but the 
phenomena upon which the traditional engineering disciplines (civil, 
mechanical, chemical, electrical) are based can themselves all be seen 
to be derivable from the system phenomenon. (Note carefully that 
nothing about this suggests modeling behavior of an aircraft carrier 
from models of molecules—it simply notes that the same general 
interaction-based system phenomena is the basis of emergence of 
behavior at each higher system level.)

3. The system phenomenon supports the emergence of hard sciences, 
laws, and first principles for higher level systems of critical impor-
tance to the well-being of humankind.

4. Systems engineering, along with its related scientific foundations, is 
a young and still emerging discipline. The re-planting of systems en-
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gineering in a model-based framework is an important step 
toward strengthening the discipline but requires a stronger 
model framework for that to occur, and the system phenom-
enon points the way to a key part of that framework.

Implications for future action include:
1. Beyond the scope of this paper, there are also other aspects 

of that strengthened modeling framework in need of atten-

tion. The purpose-oriented nature of engineering reminds 
us that a stronger representation of value, fitness space, and 
selection is a part of that framework (Schindel 2013b).

2. The INCOSE MBSE Patterns Working Group is practicing 
the PBSE representation of S*Patterns, which are MBSE 
models of recurring whole-system characteristics important 
to systems engineering. Participation in this INCOSE 
working group is invited (INCOSE Patterns WG). 
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INTRODUCTION

 ABSTRACT
System complexity continues to grow, creating many new challenges for engineers and decision makers. To maximize value delivery, 
“both” systems engineering and decision analysis are essential. The systems engineering profession has had a significant focus on 
improving systems engineering processes. While process plays an important role, the focus on process was often at the expense 
of foundational engineering axioms and their contribution to system value. As a consequence, systems engineers were viewed as 
process developers and managers versus technical leaders with a deep understanding of how system interactions are linked to 
stakeholder value. With the recent shift toward model-based systems engineering (MBSE), systems engineering is “getting back 
to basics,” focusing on value delivery via first principles, using established laws of engineering and science. This paper describes 
how pattern-based systems engineering (PBSE), as outlined within INCOSE’s model-based systems engineering (MBSE) initiative, 
explicates system value through modeling of first principles, re-uniting systems engineering and decision analysis capabilities.

Explicating System Value 
through First Principles: 
Re-Uniting Decision 
Analysis with Systems 
Engineering
Troy Peterson, tpeterson@systemxi.com; and Bill Schindel, schindel@ictt.com 
Copyright © 2016 by Troy A. Peterson and Bill Schindel.  Published and used by INCOSE with permission.

[Editor: This paper for systems engineering foundations refers to the Systems Engineering Handbook 4th edition (Copyright 2015 by the 
International Council on Systems Engineering), ISO 15288:20915, and the Systems Engineering Vision 2020 published by INCOSE in 2007.]

Complexity in systems and 
decisions: Today, the scope of 
engineering efforts often rapidly 
expands to include more and 

more external interactions. Additionally, 
within a defined system boundary, systems 
are becoming significantly more intercon-
nected. Collectively this is accelerating the 
number of interactions engineers need to 
understand and manage. This increase and 
the associated challenges show no sign 
of abatement as shown in Figure 1 which 
depicts the explosion of the Internet of 
things (IoT). IoT is a significant contrib-
utor to the increase in connectedness and 
system complexity, and we are still only 
in the formative stages of this exponential 
growth. Furthermore, this interconnect-

ed phenomenon is ubiquitous, occurring 
across domains and with systems we use 
every day.

In addition to the increased density of 
interactions, the pace of contextual change 
is also increasing. The contextual dynamics 
have the effect of continually altering a 
system’s fitness and value. This further com-
plicates matters, adding the challenge to 
design into systems the necessary flexibility 
and agility, giving rise to a more stochastic 
view of design rather than a more tradition-
al steady state, deterministic perspective.

This context obviously brings about 
many challenges for engineers and decision 
makers, which extend beyond the tech-
nical domain. Given the complexity and 
web of interactions, a decision that may 

appear simple at first could have significant 
strategic, social, political, and economic 
impact. Where an engineer or manager’s 
intuition may have been sufficient decades 
ago – today, when trying to consider of 
second, third and fourth order impacts, the 
complexity can quickly overwhelm any one 
person or even a highly capable team.

In his book Notes on the Synthesis of 
Form, Christopher Alexander (1964) 
articulated this context eloquently over 50 
years ago.  The following statements are 
excerpts from his book:

Today more and more design problems are 
reaching insoluble levels of complexity

At the same time that problems increase 
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in quantity, complexity and difficulty, they 
also change faster than before

Trial-and-error design is an admirable 
method. But it is just real world trial and 
error which we are trying to replace by a 
symbolic method. Because trial and error 
is too expensive and too slow

These statements are more applicable 
today than they were 50 years ago and they 
will be even more applicable 50 years from 
now. Consequently, approaches which 
leverage symbolic method, speed feedback 
and iterations, build in agility and ensure a 
holistic view are essential.  One important 
aspect of ensuring our methods emphasize 
such results is to better couple the decision 
making and innovation processes and 
related models.

History and a call for a new view: The 
history of systems engineering has strong 
ties to fundamental engineering disciplines, 
the sciences and to mathematical modeling 
and managerial decision support (manage-
ment sciences)–often referred to as decision 
analysis, industrial engineering, or opera-
tions research. So, in many ways a discus-
sion of how to integrate these disciplines is 
a return to an early foundational element of 
systems engineering.

To help address the complexity previ-
ously outlined and to better re-integrate 
systems engineering and decision analysis 
many efforts are underway within indus-
try, the government and non-profits. For 
example, a working group within INCOSE 
focuses on decision analysis with the pur-
pose of advancing the state of the practices, 
education, and theory of decision anal-

ysis and its relationship to other systems 
engineering disciplines. The council of 
engineering systems universities (CESUN) 
is another example which was formed to 
address the great challenges posed by large-
scale, interconnected, and therefore highly 
complex and dynamic, socio-technical sys-
tems. The excerpt from the CESUN website 
which follows articulates the contributions 
of systems engineering and decision analy-
sis to engineering systems.

As many engineers began to delve 
deeper and deeper into science, some 
others stressed the design perspective 
and explored how to solve the problems 
arising from greater technical complexity. 
Operations research, systems and decision 
analysis, industrial engineering, systems 
engineering—these all contributed to 
the expansion of engineering—but at 
a certain point there was a recognition 
that some of the greatest challenges were 
precisely where the technical systems had 
their interfaces with people, policies, reg-
ulations, culture, and behavior (CESUN 
n.d.).

This excerpt also calls out the expanded 
and new view at the “… interfaces with 
people, policies, regulations, culture and 
behavior.” This perspective brings with it a 
diverse set of stakeholders and an expanded 
view of value. To achieve value delivery in 
this new view we must have an improved 
coupling of systems engineering and deci-
sion analysis. The disciplines are absolutely 
complementary with systems engineering 
providing an overall approach to system-
atically innovate and decision analysis 

providing a systematic approach to think 
about, experiment with, and analyze com-
plex problems or opportunities throughout 
the innovation process.

To fully integrate these disciplines the 
third bullet from Alexander noted above 
makes an important observation about 
the use of “…symbolic method. Because 
trial and error is too expensive and slow.” 
This brings us first to the use of models 
and model-based systems engineering 
(the symbolic part) and then to the agile 
systems engineering life cycle pattern (the 
sped-up “trial and error” part).

One might at first assume that this sets 
up a rivalry between symbolic model-based 
analysis and simulation versus waiting 
for post-development market judgment. 
However, the agile systems engineering life 
cycle pattern (Schindel and Dove 2016) 
reminds us of the limits of symbolic models 
and provides a “middle way:” Using “the 
market” throughout the development 
cycle, moving “who makes the decisions” 
of development-time decision analysis, to 
include the ultimate decision-maker—the 
stakeholder.

RE-UNITING DECISION ANALYSIS WITH 
SYSTEMS ENGINEERING

Many frameworks group, categorize or 
connect decision analysis with systems 
engineering. This is true within the over-
view of system engineering provided by 
the Defense Acquisition University shown 
in Figure 2, and with the INCOSE Systems 
Engineering Handbook (Walden et al. 2015) 
as shown in Figure 3.  Figure 4 is from the 
agile systems engineering life cycle man-
agement (ASELCM) pattern (Schindel and 
Dove 2016).

The process view: The Defense Acqui-
sition University states that the decision 
analysis process transforms a broadly stated 
decision opportunity into a traceable, de-
fendable, and actionable plan. Furthermore, 
that it is performed at all systems levels and 
across the life cycle. The DAU outlines deci-
sion analysis integration specifically with 
the process areas of technical planning, 
assessment, stakeholder requirements, re-
quirements analysis and architecture design 
all shown in Figure 2. INCOSE also notes 
the decision management process, which 
includes decision analysis, integrates with 
all other systems engineering processes in 
its system life-cycle process N2 chart found 
in the Appendix A of the Systems Engineer-
ing Handbook (2015). Figure 3 provides 
a view of the system life cycle processes 
aligned with ISO 15288 and INCOSE’s 
Systems Engineering Handbook. The ASE-
CLM reference boundary diagram shown 
in Figure 4 contains the same systems 
engineering processes in an abstract form 

Figure 1. Explosive growth in the Internet of things (Cisco n.d.)
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as life cycle system management processes 
(shown in yellow boxes) however it also 
introduces the target system, target system 
models and the target environment all of 
which are essential when considering how 
to fully integrate systems engineering and 
decision analysis.

While these views and their associated 
processes play an essential role in engi-
neering complex systems this view alone 
is insufficient. Taken to the extreme, some 
focused solely on systems engineering 
processes omitting an essential aspect of 
fully integrating systems engineering and 
decision analysis found in how system in-
teractions deliver value. As a consequence, 
systems engineers at times have been 
viewed solely as process developers and 
managers versus technical leaders with a 
deep understanding of how system interac-
tions are connected to stakeholder value.

For well over a decade the systems 
engineering profession has had a significant 
focus on improving systems engineering 
processes – as illustrated by CMMI (2010) 
and ISO 15288. Connections between the 
systems engineering and decision analysis 
exist at a high level as shown in Figures 2 
and 3 as well as within many more detailed 
process architectures. These connections 
are important and help program teams 
manage the complex system of innovation. 
However, there is a deeper need in con-
necting these disciplines, both more deeply 
and in a more explicit way to ensure value 
delivery.

Models of process vs models of sys-
tems: Process integration is important 
and helpful, but alone it is not sufficient to 
manage the complexity in systems today—
in fact it can become nearly impossible to 
avoid unintended consequences without 
detailed models of the target system. 
Much of the integration effort of systems 
engineering and decision analysis has been 
focused on process — the infrastructure for 
information about the system of interest. 
It has not been, however, as focused on the 
information that passes through the process 
about the target system.

With the recent shift toward mod-
el-based systems engineering (MBSE), the 
systems engineering discipline is “getting 
back to basics” and back to the founda-
tional engineering axioms built upon first 
principles and established laws of science 
and engineering. This focus is more aligned 
with the genesis of classical mechanics, 
beginning with Newtonian interactions and 
their emergent properties, so that the whole 
is greater than the sum of the parts. First 
principles as used here mean interactions 
of force, energy, mass flow, and informa-
tion flow. This includes established laws of 
physics and emerging higher-level laws. For 
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example, this could include well-formed 
and understood interactions and patterns 
within domains such as automotive, health-
care, energy, and others (Schindel 2016).

Using models to connect first principles 
to stakeholder value is first accomplished 
through an explicit connection in the 
metamodel of how we model systems. 
More specifically by expressing and directly 
connecting both stakeholder value and 
system interactions. At risk in this connec-
tion is misunderstanding the value to first 
principle connections, for example having 
a narrowly defined stakeholder space and 
omitting one or more stakeholders. This 
risk is addressed in the agile systems engi-
neering life cycle pattern, which expresses 
stakeholder value as demonstrated by 
selection interactions in the target system 
environment which more frequently incor-
porate feedback and design iterations.

MODEL-BASED SYSTEMS ENGINEERING 
INCOSE defines model-based systems 

engineering (MBSE) as “the formalized 
application of modeling to support system 
requirements, design, analysis, verification 
and validation activities beginning in the 
conceptual design phase and continuing 
throughout development and later life cycle 
phases….” (INCOSE 2007). The Object 
Management Group’s MBSE wiki notes that 
“Modeling has always been an important 
part of systems engineering to support 
functional, performance, and other types of 
engineering analysis” (OMG n.d.).

The application of MBSE has increased 
dramatically in recent years and is becom-
ing a standard practice to help manage the 
complexity seen in systems today. MBSE 
has been enabled by the continued maturity 
of modeling languages such as SysML® and 
significant advancements made by tools 
vendors. These advancements are improv-
ing communications and providing a foun-
dation to integrate diverse models. MBSE is 
often discussed as being composed of three 
fundamental elements – tool, language, 
and method. The third element, method, 
however, has not always been given proper 
consideration. Because the language and 
tool are relatively method independent, it is 
methodology which further differentiates 
the effectiveness of any MBSE approach and 
its ability to help manage the complex and 
interrelated functionality of today’s highly 
interconnected systems. For the approach 
discussed in this paper, the “methodology” 
includes not only process as discussed in 
the previous section in accordance with 
ISO 15288, INCOSE, DAU, or others, but 
more significantly the very concept of the 
underlying system information those pro-
cesses produce and consume, independent 
of modeling language and tools.

PATTERN-BASED SYSTEMS ENGINEERING
Pattern-based systems engineering 

(PBSE) as outlined within INCOSE’s mod-
el-based systems engineering (MBSE) ini-
tiative (OMG n.d.), is a methodology which 
formalizes historical pattern efforts using 
explicit, re-usable, configurable S*Models 
(S*Patterns). Moreover, it explicates system 
value through an understanding of system 
interactions and their projection onto value 
space (features). Pattern-based systems 
engineering (PBSE) can address 10:1 more 
complex systems with 10:1 reduction in 
modeling effort, using people from a 10:1 
larger community than the “systems ex-
pert” group, producing more consistent and 
complete models sooner. These dramatic 
gains are possible because projects using 
PBSE get a “learning curve jumpstart” 
from an existing pattern and its previous 
users, rapidly gaining the advantages of its 
content, and improving the pattern with 
what is learned, for future users. The major 
aspects of PBSE have been defined and 
practiced for many years across a number 
of enterprises and domains. To increase 
awareness of the PBSE approach, two years 
ago INCOSE started a patterns challenge 
team (now the Patterns Working Group) 
within the INCOSE MBSE initiative.

The term “pattern” appears repeated-
ly in the history of design, such as civil 
architecture, software design, and systems 
engineering (Alexander 1977, Gamma et 
al. 1995, and Cloutier 2008). These are all 
similar in the abstract, in that they refer 
to regularities that repeat, modulo some 
variable aspects, across different instanc-
es in space or time. However, the PBSE 
methodology referred to by this paper is 
distinguished from those cases by certain 
important differences:

1. S*Patterns are model-based: We are 
referring here to patterns represent-
ed by formal system models, and 
specifically those which are re-usable, 
configurable models based on the 
underlying S*Metamodel. (By con-
trast, not all the historical “patterns” 
noted above are described by MBSE 
models.)

2. Scope of S*Patterns: We are referring 
here to patterns which will usually 
cover entire systems, not just small-
er-scale element design patterns with-
in them. For this reason, the typical 
scope of an S*Pattern applications 
may be thought of as re-usable, con-
figurable models of whole domains 
or platform systems—whether formal 
platform management is already rec-
ognized or not. (By contrast, most of 
the historical “patterns” noted above 
describe smaller, reusable subsystem 
or component patterns.) S*Patterns 
are similar to architectural frame-
works, although they contain more 
information.

Fundamental to pattern-based systems 
engineering is the use of the S*Metamodel 
(summarized by Figure 5), a relational/
object information model used in the 
Systematica™ methodology to describe 
requirements, designs, and other infor-
mation in S*Models such as verification, 
failure analysis, etc. (Schindel and Peterson 
2013). A metamodel is a model of other 
models—a framework or plan governing 
the models that it describes. These may be 
represented in SysML®, database tables, 
or other languages. As an MBSE enabled 
approach PBSE can be implemented across 
multiple third-party commercial-off-the-
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shelf (COTS) tools and languages (that is, 
product line management PLM systems, 
modeling tools, architecture tools, databas-
es, SysML, IDEF).

Specifically, an S*Pattern is a re-usable, 
configurable S*Model of a family of systems 
(product line, set, ensemble etc.) as shown 
in Figure 6.

Over several decades, pattern-based sys-
tems engineering has been developed and 
practiced across a range of domains, in-
cluding carrier grade telecommunications, 
engines and power systems, automotive 
and off-road heavy equipment, military and 
aerospace, medical devices, pharmaceutical 
manufacturing, consumer products, and 
advanced manufacturing systems.

Engineers in these and many other 
domains spend resources developing or 
supporting systems that virtually always 
include major content from repeating 
system paradigms at the heart of their 
business (for example, core ideas about 
airplanes, engines, switching systems, etc.). 
Despite this, the main paradigm apparent 
in most enterprises to leverage “what we 
know” is to build and maintain a staff 
of experienced technologists, designers, 
application engineers, managers, or other 
human repositories of knowledge.

The physical sciences are based upon the 
discovery of regularities (patterns), which 
we say express laws of both nature and 
systems value markets. Although re-usable 
content has some history in systems engi-
neering, there is less recognition of a set of 
“Maxwell’s Equations” or “Newton’s Laws” 
expressing the nature of the physical world, 
as the basis of those systems patterns. If 
electrical engineering and mechanical 
engineering disciplines have physical law 
at their foundation, why cannot systems 
engineering do the same?

By contrast, the S*Metamodel is focused 
on the very physical interactions that are 
the basis of the physical sciences, and 
which we assert are at the heart of the defi-
nition of system (in this methodology) as a 
collection of interacting components. The 
S*Patterns that arise from the explicit rep-

resentation of physical Interactions re-form 
the foundation of system representations 
to align more explicitly with the physical 
sciences.

At its very foundation, the ASELCM 
pattern of PBSE links decision analysis and 
systems engineering ensuring system con-
figurations are directly traceable and driven 
by stakeholder values. PBSE explicates 
system value via a formal model of interac-
tions, whether force, mass flow, energy or 
information exchanges which are founda-
tional to science and to the first principles 
of system design and market responses.

SYSTEM VALUE – STAKEHOLDER FEATURES
System value is measured by the selec-

tion interactions of stakeholders or their 
representatives; in the S*Metamodel these 
values are expressed explicitly as features. 
In the ASELCM pattern, these selections 
are as explicit as the (other) interactions of 
the system of interest. Features and their 
associated attributes contain the value 
space for a system of interest codified as 
formalized stakeholder needs/values. The 
connection between stakeholders and 
features is clear within the S*Metamodel 
shown in Figure 5. Features are shown at 
the top of the figure using a black box. Fig-
ure 7 reformats and displays just a portion 
of the S*Metamodel clearly annotating 
the classes from which we derive system 
value. Features are parameterized by feature 
attributes which provide a measure of 
value – including all stakeholder measures 
of effectiveness (MOEs). Within Figures 5 
and 7 these feature attributes are represent-
ed by a white elongated oval adjacent to the 
black feature box, or by other symbology in 
SysML or other language.

As outlined in the introduction, just as 
the system boundary has broadened, the set 
of stakeholders and their respective values 
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must also be broadened. It is important to 
note that stakeholders include all classes of 
stakeholders and not just those who may 
purchase or use a product or system of 
interest. Stakeholders include shareholders, 
manufacturers, society, and others. Every 
trade off or decision which sets the direc-
tion of a system design is a value judgment 
(selection interaction) from the perspective 
of one or more stakeholders. Given this 
view it is absolutely necessary to have a ho-
listic view and identify the full complement 
of stakeholders.

In fact, it is the omission of stakehold-
ers early in a systems program that often 
leads to costly rework, redesign, failures in 
system validation and sometimes program 
cancelation. When feature space is mature 
and expansive it can significantly reduce 
technical and programmatic risk. While 
ensuring the set of stakeholders is compre-
hensive it should not be assumed however 
that all stakeholders and their associated 
values are equal.

Since feature space contains the full com-
plement of stakeholder values (the fitness 
landscape) it contains the entire trade space 
for the design and development of systems. 
This includes the full breadth and hierar-
chical depth of value including objectives 
and measures, weights, and rationale 
prescribed in texts focused on decision 
analysis (Keeney 1992, Clemen and Reilly 
2001, and the Defense Acquisition Guide-
book References). With stakeholders and 
their features well understood the features 
are used to configure systems that conform 
to the selections and the dialing in of their 
associated attributes.

Feature space is where selection-based 
decision analysis occurs. It is used as the 
basis of analysis and defense of all deci-
sion-making including optimization and 
trade-offs. This gives rise to the next class of 
information in Figures 5 and 7 which deliv-
ers system value – functional interactions.

FIRST PRINCIPLES — FUNCTIONAL 
INTERACTIONS 

Functional interactions are what define 
a system (a group of interacting, elements 
forming a complex whole) and through 
which the system delivers value. Functional 
interactions involve the exchange of forces, 
mass, energy, or information. When we 
think of these fundamental exchanges, it 
brings to mind the work one would become 
intimately familiar in the study of physics, 
chemistry, mechanics, and many other 
engineering, science, or mathematics. These 
exchanges return us to the first principles of 
these disciplines and how they apply to the 
systems we design and develop. Addition-
ally, as our understanding grows within a 
particular domain or with a specific type 

of system, we often begin to learn the first 
principles of these systems which are also 
expressed as interactions. These interac-
tions can be at the component, subsystem 
or system level, and especially with the ex-
ternal environment of a system of interest.

Alternatives as outlined within decision 
analysis are the options to evaluate against 
decision criteria or the objectives and 
measures. Functional roles, displayed as the 
yellow box in Figures 5 and 7, are solution 
neutral logical roles which participate in 
an interaction. An identified functional 
interaction may be implemented by various 
combinations of functional roles. This gives 
rise to many alternatives when making 
traditional functional allocations.

In Figure 7 the feature and functional 
role attributes are coupled as shown by 
the dotted line. This particular coupling 
qualifies the fitness or trade space. The 
feature attribute defines the measure of ef-
fectiveness and the functional role attribute 
provides a means and measure of value 
delivery (level of performance) depending 
upon the selection of design components 
filling the functional role.

Parameterization and configura-
tion: S*Models are intended to establish 
modeled feature sets for all stakeholders. 
This (features) portion of an S*Pattern is 
then used to configure the pattern for indi-
vidual applications, product configurations, 
or other instances. It turns out that the 
variation of configuration across a product 
line is always for reasons of one stakehold-
er value or another, so feature selection 
becomes a proxy for configuring the rest of 
an S*Pattern into a specifically configured 
instance model.

Because S*Features and their feature at-
tributes (parameters) characterize the value 
space of system stakeholders, the resulting 
S*Feature configuration space becomes the 
formal expression of the trade space for the 
system. It is therefore used as the basis of 
analysis and defense of all decision-making, 
including optimizations and trade-offs. The 
S*Feature space also becomes the basis of 
top-level dashboard model views that can 
be used to track the technical status of a 
project or product. All “gaps” and “over-
shoots” in detailed technical requirements 
or technologies are projected into the 
S*Feature space to understand their relative 
impact.

As illustrated by the “down stroke” in 
Figure 6, a generic S*Pattern of a family 
of systems is specialized or “configured” 
to produce an S*Model of a more specific 
system, or at least a narrower family of 
systems. Since the S*Pattern is itself already 
built out of S*Metamodel components, for 
a mature pattern the process of producing a 
“configured model” is limited to two trans-

formation operations:
1. Populate: Individual classes, rela-

tionships, and attributes found in the 
S*Pattern are populated (instantiat-
ed) in the configured S*Model. This 
can include instances of features, 
interactions, requirements, design 
components, or any other elements 
of the S*Pattern. These elements are 
selectively populated, as not all nec-
essarily apply. In many cases, more 
than one instance of a given element 
may be populated (for example, 
four different seats in a vehicle, five 
different types of safety hazard, etc.). 
Population of the S*Model is driven 
by what is found in the S*Pattern, 
and what features are selected from 
the S*Pattern, based on stakeholder 
needs and configuration rules of the 
pattern, built into that pattern.

2. Adjust values of attributes: The values 
of populated attributes of features, 
functional roles/technical require-
ments, and physical components are 
established or adjusted.

This brings into sharp focus what are 
the fixed and variable aspects of S*Patterns 
(sometimes also referred to as “hard points” 
and “soft points” of platforms). The variable 
data is called “configuration data.” It is 
typically small in comparison to the fixed 
S*Pattern data. Since users of a given S*Pat-
tern become more familiar over time with 
its fixed (“hard points”) content (for exam-
ple, definitions, prose requirements, etc.), 
this larger part is typically consulted less 
and less by veterans, who tend to do most 
of their work in the configuration data (soft 
points). That data is usually dominated by 
tables of attribute values, containing the key 
variables of a configuration. Since this is 
smaller than the fixed part of the pattern, in 
effect the users of the pattern experience a 
“data compression” benefit that can be very 
significant, allowing them to concentrate 
on what is or may be changing (Schindel 
2011a).

Just as feature attributes parameter-
ize stakeholder values, functional role 
attributes parameterize technical behavior. 
The coupling of these attributes shown in 
Figures 5 and 7 provides a model-based 
approach to coupling the first principles of 
engineering and science with stakeholder 
value. It is through this coupling that pat-
tern-based systems engineering explicates 
system value through first principles.

The agile system life cycle 
pattern: INCOSE is currently executing the 
2015-2016 agile systems engineering life 
cycle model (ASELCM) project (Schindel 
and Dove 2016). Working across a series of 
North American and European enterprises 
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and industries, this discovery project is 
articulating and validating the ASELCM 
Pattern mentioned in this paper, in the 
form of a formal S*Pattern.

The ASELCM pattern explicates the 
points summarized in this paper, including:

1. The deeper re-integration of decision 
analysis and systems engineering, 
with the decisions shared between 
“internal” decision-makers and 
agile-measured “external” stakehold-
er representatives, whose selection 
behaviors are studied as a faster and 
surer path to good decisions.

2. The use of explicit MBSE models 
to express life cycle system require-
ments, design, generated from 
MBSE patterns by configuration and 
reconfiguration, as the environment 
changes in non-deterministic ways, 
and as a point of accumulation of 
learning.

CONCLUSIONS
System complexity and 

interconnectedness continue to rapidly 
increase, making systems development 
extremely challenging. Additionally, the 
context in which developed systems operate 
is continually changing, altering the fitness 
and value delivered systems provide. The 
systems engineering discipline has made 
many great improvements through process 
definition and integration. While these 
improvements have enabled and structured 
innovation, they are not sufficient to 
overcome the outlined challenges, which 
are likely to only increase over time. Our 
traditional development activities must 
be revisited and enhanced to manage 

significant complexity, nth order impacts, 
highly dynamic contexts, complicated 
decisions and significant ambiguity.

An important aspect to an improved 
approach is to better integrate decision 
analysis and systems engineering and to 
leverage “symbolic method” (to the extent 
that symbolic analysis and simulation are 
sufficient) while also improving ability to 
capture stakeholder and market judgments 
without undue delay (to the extent that 
empirical experiment is also required). 
This leads us to modeling methods and 
the promise provided by model-based 
systems engineering. As a particular MBSE 
methodology, PBSE is particularly well 
suited to model complex systems. With 
interactions and features at the core of the 
S*Metamodel, PBSE focuses the engineer-
ing effort on how systems fundamentally 
provide value. It couples system value, 
experienced by stakeholders as features, 
with the first principles of engineering and 
science, expressed as functional interac-
tions, making for a strengthened systems 
engineering approach. This approach also 
shifts the focus from the innovation process 
to the information passing through the pro-
cess, which describes the system of interest, 
which ultimately determines the level of 
value provided to stakeholders. The explicit 
coupling within the modeling approach 
permits rapid iteration, configuration, 
assessment, and analysis.

PBSE provides a data model and frame-
work that is both holistic and compact. It 
addresses the core system science, or first 
principles of systems required to design 
complex systems by making interactions 
more visible and directly relating these to 

how they deliver value described by stake-
holders, noted as features in the S*Meta-
model. Additional benefits of the PBSE 
approach include:

 ■ Strong expression of fitness land-
scapes as the basis for selection, trades, 
improvements, decisions, innovations, 
configuration, and understanding of 
risk and failure.

 ■ Explication of the system phenomenon 
(Schindel 2016) as a real world-based 
science and math foundation for sys-
tems engineering, amenable to systems 
science, connected to historical math/
science models of other engineering 
disciplines, and encouraging discovery 
and expression.

 ■ A detailed MBSE approach to platform 
management for system families and 
product lines.

 ■ Compatibility with contemporary mod-
eling language standards.

 ■ Direct mapping into contemporary 
modeling tools, PLM information 
systems, and other COTS tools and 
enterprise systems, increasing the value 
of existing information technologies.

 ■ Deeper support for federated data 
across differing information systems, 
for integration with emerging open 
systems life cycle standard technologies.

Pattern-based systems engineering 
(PBSE) is a methodology which explicates 
system value through an understanding 
and explicit modeling of first principles 
better uniting the systems engineering and 
decision analysis capabilities. 
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INTRODUCTION: OVERVIEW AND BACKGROUND
Problem Statement

 ABSTRACT
This paper summarizes how a well-understood problem—optimal control and estimation in “noisy” environments—provides 
a framework to advance understanding of a well-known but less well-mastered problem—system innovation life cycles and 
management of decision risks and learning. The ISO15288 process framework and its exposition in the INCOSE Systems Engineering 
Handbook (2015) describe system development and other life cycle processes. Concerns about improving the performance of 
processes in dynamic, uncertain, and changing environments are partly addressed by “agile” systems engineering approaches. 
Both are typically described in the procedural language of business processes, so it is not always clear whether the different 
approaches are fundamentally at odds, or just different sides of the same coin. Describing the target system, its environment, 
and the life cycle management processes using models of dynamical systems allows us to apply earlier technical tools, such as the 
theory of optimal control in noisy environments, to emerging innovation methods.

Innovation, Risk, Agility, 
and Learning, Viewed 
as Optimal Control and 
Estimation

William D. (Bill) Schindel, schindel@ictt.com 
Copyright © 2017 by William D. Schindel.  Published and used by INCOSE with permission.

[Editor: This paper for systems engineering foundations refers to the Systems Engineering Handbook 4th edition (Copyright 2015 by the 
International Council on Systems Engineering), ISO 15288:2015, and the Systems Engineering Vision 2020 published by INCOSE in 
2007.]

Advancing understanding and 
performance of the system 
innovation life cycle is central to 
INCOSE. Current understanding 

is exemplified by the Systems Engineering 
Handbook, ISO15288, and Guide to the 
SE Body of Knowledge (Walden et al. 
2015, ISO 15288:2015, and Pyster et al. 
2013), describing established principles 
and practices grown pragmatically out of 
decades of real-world experience. This is 
a different kind of foundation than STEM 
understanding of the phenomena of 
electrical, mechanical, or chemical systems 
as the basis for electrical, mechanical, and 
chemical engineering disciplines. Complex 
engineered systems and environments, 

systems of systems, compressed innovation 
cycles, and dynamically changing compet-
itive markets and technologies challenge 
understanding and capabilities to perform 
system innovation effectively enough. The 
traditional principles might still apply, but 
how do we know whether we are per-
forming the overall process as effectively 
as possible? We understand the possibil-
ities and limits on efficiency of engines 
from thermodynamics, but how do we 
understand the possibilities and limits on 
innovation cycles? This paper suggests that 
certain existing STEM-based foundations 
are available, enabled by the transition to 
model-based systems engineering (MBSE), 
that can be exploited in pursuit of optimiz-

ing innovation cycles, and as a foundation 
for understanding currently emerging 
methods.

The Geometrization of Innovation Space
Converting physical and mathematical 

descriptions into “spatial” geometric terms, 
while seemingly abstract, has a long history 
of positive impacts in the history of science, 
technology, engineering, and mathematics 
(STEM). This paper introduces the same 
kind of thinking into how we understand 
the process of innovation in general as 
a system, and particularly in more chal-
lenging cases involving highly dynamic 
environments, continuous learning, and 
uncertainties in our ability to fully observe 
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or control what is occurring during the 
innovation process. Even where current 
practices may be seen in this approach, 
it provides a more general way to under-
stand them, and therefore to perform and 
improve them in the future.

Before introducing this alternate per-
spective, this paper will briefly summarize 
some of the traditional as well as emerging 
perspectives across seemingly different do-
mains. Then, the impact of shifting to more 
model-based representation of systems on 
our ability use the ideas of mathematical 
spaces will be described. Following that, the 
paper will describe the spaces of interest 
in this case, and how they are addressed 
by the existing theory of optimal control 
and estimation. An immediate application 
is noted in the world of agile, “continuous, 
and “fail fast and recover early” develop-
ment, and other applications are briefly 
summarized, with additional application 
suggestions for future pursuit.

Innovation, Risk, and Agility: Traditional 
and Emerging Concerns

This section briefly summarizes some of 
the more prominent risk-connected aspects 
of traditional and emerging perspectives 
on system innovation and related life cycle 
management. For purposes of this discus-
sion, we will consider innovation to mean 
the delivery of improved stakeholder value, 
through any aspects of the system life cycle 
management processes. This is an explicit 
formalism, because the approach explicitly 
models value across all stakeholders (Kline 
et al. 2017, Simoni et al. 2016, and Rogers 
2003). It avoids a technology-centric view, 
without ducking the challenge of com-
plexity. It also creates an explicit space for 
improved understanding of variation and 
selection.

Concerns of Traditional Approaches 
to Innovation. The traditional systems en-
gineering view of these life cycle processes 
can be described by the ISO15288 standard 
(ISO 2015) or its further description in the 
INCOSE Systems Engineering Handbook 
(Walden et al. 2015). Within that perspec-
tive, a number of differently configured 
specific forms of the development portion 
of these life cycles may apply, based on 
the metaphors of waterfall, spiral, waves, 
or otherwise. Additional portions of the 
traditional ISO 15288 life cycle processes 
include production, distribution, opera-
tion, maintenance, update, and retirement, 
any of which may be subject to innovation 
delivering enhanced stakeholder value.

The risk management perspective in the 
traditional case would include concerns 
such as multiple types and sources of risk, 
among these limited knowledge of chang-
ing environment, stakeholder situations 

and needs, as well as technical and other 
risks to performance, costs, and schedule. 
Traditional risk management concerns in-
clude identifying risks, assessing them, and 
working to avoid, transfer, mitigate, and 
monitor those risks (Walden et al. 2015). 
More attention is recently paid to risks 
arising when systems of interest or their 
environments exhibit dynamical complexi-
ty (Sheard et al. 2016).

Concerns of Emerging Approaches to 
Innovation. New approaches to innovation 
are rapidly emerging and are sometimes 
perceived (correctly or not) as at odds with 
systems engineering, at least as tradition-
ally performed. In the agile and lean start 
up communities (for systems, software, 
products, business, etc.), risk is addressed 
by seeking early and continuing feedback 
through short or incremental “experiments” 
(whether called “sprints” or otherwise) that 
encourage discovery, exposure, or explo-
ration of instances of risk early enough 
that they can be addressed while the cost 
of doing so is still relatively smaller, even if 
this causes change to what would other-
wise have been fundamental assumptions. 
Examples can be seen in the methodologies 
of agile software and systems (Rigby et al. 
2016, Dove and LaBarge 2014), lean start 
up, the minimum viable product, pivoting 
(Ries 2011), and experimentation in general 
(Schrage 2014, Anderson et al. 2011, Clarke 
2016, Kohavi et al. 2009, Manzi 2012, Teller 
2016, and Thomke 2003).

How System Models Can Shift Our 
Perspective on Innovation

INCOSE has recognized the importance 
of the continuing rise of model-based 
methods (Friedenthal et al. 2015), and 
formalized an objective of supporting sys-
tems engineering becoming a model-based 
discipline (Peterson et al. 2017). We note 
that this emergence is still at a relatively 
early and progressing stage — what is cur-
rently referred to as a “system model” may 
not represent what is possible in the future. 
This larger shift can include moving from 
system engineering’s traditionally pro-
cess- and procedure-oriented emphasis to 
something closer to the system model em-
phasis of other STEM disciplines (Schindel 
2016), without abandoning the discipline 
of process.

Mathematically oriented models have 
a long history in design optimization, 
(Fisher 1971, Bellman 1957, Koch 1998, 
Pontryagin et al. 1962, Smaling 2005, and 
Box 2013), predating more recent use of 
system (MBSE) models for other purposes 
(Friedenthal et al. 2015). However, the 
scope of such design optimization mathe-
matical models was generally focused on 
key architectural or other specific, import-

ant, but limited scope decisions, not the 
overall system being innovated, and not a 
dynamical model of the overall process of 
innovation.

In contrast to but building on that 
history, our interest in this paper is the 
convergence of (1) the earlier design 
optimization models (cited above) with (2) 
wider-scope, system-level MBSE models 
having strengthened STEM foundations 
(cited above), (3) more powerful compu-
tational environments (Friedenthal et al. 
2015), (4) continuous incremental develop-
ment methodologies (cited above), and (5) 
extension of the system models to include 
both the target system of interest and the 
development and other life cycle manage-
ment environments as systems in their own 
right (Schindel and Dove 2016).

The traditional issues summarized in the 
earlier sections above are fundamental and 
not likely to disappear through technique 
or method. However, the rise of system 
models as tools for innovation can have 
similar effects to their historical emergence 
in the other scientific and engineering 
disciplines — increasingly powerful ways 
to understand and attack those traditional 
issues, with increased clarity, quantification, 
and qualitative understanding.

WHERE DO SYSTEMS COME FROM? SYSTEM 
LIFE CYCLE TRAJECTORIES IN S*SPACE
SE Information versus SE Process

The systems engineering process is often 
conceptualized by systems engineers using 
the life cycle management process models 
of ISO 15288 and the INCOSE Systems 
Engineering Handbook, exemplified by the 
systems engineering “vee” model (Forsberg 
et al. 2000), in one form or another, such as 
illustrated by the upper portion of Figure 1.

As also illustrated in Figure 1, the systems 
engineering process consumes and produces 
information, along with other kinds of 
resources. The perspective of this paper 
assumes an INCOSE-visualized future of 
model-represented information, represent-
ing system configurations progressing over 
the system life cycle. Because this paper 
emphasizes the impact of system models, 
Figure 1 uses symbology from the S*Meta-
model summary framework (INCOSE Pat-
terns Working Group 2015) to illustrate the 
iterative production and consumption of 
information within the systems engineer-
ing process. The S*Metamodel framework 
represents the smallest set of information 
sufficient for the purposes of science and 
engineering in model form including: a sig-
nificant range of stakeholder value/fitness 
space and purpose, technical requirements, 
design architecture, quantitative couplings 
and sensitivities, and failure modes and 
impacts.
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designed a power supply before?)
4. More subjectivity and interpretation 

are required in reviews than would be 
preferred.

5. Arguments about whether systems 
engineering has its foundation, like 
the other engineering disciplines, 
in underlying phenomena, physical 
laws, and first principles.

Geometrization of Systems Engineering 
Model Information Space

By “geometrization,” we refer to the use 
of spatial coordinate system frameworks 
to represent state (in this case, the 
configuration of a modeled system), and 
with that transformation the availability 
of certain important formal mathematical 
tools coupled with intuitive spatial 
references. A familiar framework of this 
sort is a three-dimensional representation 
of space above a small region of the surface 
of the earth, used to represent the ballistic 
trajectory of a projectile fired from and 
returning to the earth. Other geometrized 
representations describe more abstract 
ideas in more familiar looking 3-space, or 
higher numbers of dimensions.

Two very famous geometrizations oc-
curred in the history of mathematics, both 
having profound practical impacts on the 
day-to-day tools of modern engineering, 
noted in Figure 2.

1. The geometrization of algebra, by 
Rene Descartes, associated with 
graphs of conic sections or other 
shapes generated by algebraic 
formulae (Boyer 1959).

2. The geometrization of function 
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Target System
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(S*Metamodel Summary)

Feature

Functional
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Design: Top System

Design: Subsystem 3
Design: Subsystem 2

Design: Subsystem 1

Realization: Subsystem 3
Realization: Subsystem 2

Realization: Subsystem 1

Realization: Top System

Component Level
Design, Acquisition,

Fabrication

Organizational
Project-Enabling
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Agreement
Processes

Technical Processes

Project Processes

(Adapted from ISO/IEC 15288:2015)
Architecture
Definition

System of Innovation (SOI) Processes

De�nes
Innovation

Process
Space

Solution
Validation

Implementation

Life Cycle Management
Process (Iterative)

Information Passing
Through Life Cycle
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Figure 1. The systems engineering process produces and consumes information

Traditional systems engineering has 
historically emphasized process and pro-
cedure over the information those pro-
cesses consume and produce. As evidence 
(Walden et al. 2015, Schindel 2015, and 
INCOSE MBSE Patterns Working Group 
2015) of this relative emphasis, one may 
refer to the amount of ink and paper spent 
to describe expected process and procedure 
versus to describe the expected information 
consumed and produced. The referenced 
industry and enterprise process standards 
certainly refer to both process as well as 
information, but the rise of model-based 
methods is shifting the relative balance of 
these two back in the direction of informa-
tion models. It is informative to compare 
this to the history of physical science-based 
engineering disciplines (ME, CE, ChE, 
EE, etc.), in which there is relatively more 
emphasis on the models of underlying phe-
nomena and system models, and relatively 

less emphasis on the “procedure for per-
forming electrical engineering”. As noted 
in (Schindel 2005, 2015, 2016), historical 
impacts of this situation have included:

1. Difficulty determining when we are 
“done” performing systems engi-
neering, measuring where we are in 
process and procedure space (top 
of Figure 1) instead of where things 
stand in modeled target system con-
figuration space (bottom of Figure 1).

2. In the same way, more subjectivity 
than would be desired in describing 
what comes next, by referring to 
procedural steps (procedure space) 
instead of modeled target system 
configuration space progress.

3. Ambiguity in what the procedure-ori-
ented approach says we should do 
with what we already know from past 
projects, versus what we are finding 
out for the first time. (Have we ever 

z
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c

P(a,b,c)
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y
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Geometrization of Algebra, 
by Rene Descartes

Figure 2. Two geometrizations had 
enormous impact: Descartes and Hilbert
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spaces, by David Hilbert, associ-
ated with function inner products 
and distance metrics, correlations, 
angular direction, frequency domain 
transformations and projections, etc.   
(Simmons, 2003).

The practical effect of these become 
available when we begin to describe inno-
vated systems using models, if the models 
are based on a strong enough metamodel 
foundation:

A. Viewing the configuration of system 
information (whether about stake-
holder value and system fitness, or 
technical requirements, or design 
architecture, or failure modes, or sen-
sitivities and couplings, or otherwise) 
as a point in system configuration 
space.

B. Visualizing “where we are” in an in-
novation process as a (moving) point 
in that system configuration space, 
representing the current understand-
ing of the system of interest—instead 
which step of a procedure we have 
completed. We begin to think in 
system configuration space instead 
of process and procedures pace. (See 
Figure 1.)

C. Visualizing “where we are going” as 
points we want to reach in system 
configuration space, instead of steps 
in process and procedure space.

D. Taking advantage of the mathe-
matical concepts and tools that go 
with such spaces, including distance 
metrics, velocities, inner products, 
projections, and other tools.

E. Visualizing the progression of points 
in system configuration space as a 
trajectory, along which we want to 
move during innovation in an opti-
mal way toward a goal.

F. Realizing that this has converted the 

problem of innovation into one of 
optimal dynamical travel along an 
(agile) trajectory, in the presence of 
uncertainty.

Nothing about the above should be 
interpreted as suggesting that innovation 
is a simple deterministic process (quite the 
opposite—many random processes are in-
volved), or that we can predict its outcomes 
(also not so), fail to use the deep lessons 
learned by experienced leaders in tradi-
tional environments (rather, we want to 
share them more widely), or that we are not 
including serendipity or creativity (think 
about models of biological innovation or 
earthquakes). Rather, we are suggesting 
that, as with other applications of science 
and engineering, we are seeking STEM 
models of the world we occupy, to improve 
our ability to learn and succeed within it.

Trajectory Projections in S*Subspaces
The full S*Configuration space set of 

information modeled across the engineer-
ing process and system life cycle has much 
higher dimension than three-space, and in-
volves a mixture of dissimilar ideas, such as 

stakeholder value, material properties, laws 
of physics, etc. That may suggest putting all 
this into an integrated configuration space 
is too daunting a task.

However, a powerful aspect of geome-
trization is the idea of subspaces, in which 
some dimensions are temporarily ignored 
and a smaller number of current interests 
are visualized. This idea is illustrated by 
Figure 3, in which a trajectory in 3-space is 
projected onto three different sub-spaces, 
each of two dimensions.

In the same way, subsets of the S*Con-
figuration space may be separately studied, 
for a system that has projections into many 
subspaces. Figure 4 shows three such sub-
spaces of interest, each of which represents 
potential creative or discovered syntheses:

1. Stakeholder feature subspace: A 
discovered or learned synthesis of 
stakeholder types and their respec-
tive value or fitness space, against 
which systems will be judged. The 
place where the value of delivered 
innovation is ultimately realized and 
validated.

2. Technical behavior subspace: A 
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Figure 3: Projections onto subspaces 

Figure 4: Stakeholder feature subspace; technical behavior subspace; design subspace
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discovered or learned concept of 
operations and its related black box 
technical specification. The place 
where a technical behavior appears 
as a potential way to deliver value in 
(item 1 just above), and where a can-
didate’s design performance is judged 
technically.

3. Physical architecture subspace: A 
discovered or learned design solution, 
including physical architecture, the 
technologies upon which it is con-
structed, and the means of delivering 
the technical performance called for 
in (item 2 just above).

This is not to suggest that projection onto 
subspaces is something new: model views, 
reducing dimensions, applying principal 
component analysis, and the like are famil-
iar enough in engineering. Rather, what we 
are pointing out is that MBSE is nearing the 
point at which the whole system innovation 
problem — not just a part of it — can be cast 
in this framework. At this point, the “guid-
ance system” discussed in the next section 
becomes a practicality, as follows.

A system’s configurations, during the 
innovation cycle, can now be conceived 
as moving along a trajectory in each of 
those individual subspaces, representing 
projections onto each of them, from the 
combined trajectory in the total space. We 
can consider paths that are more or less 
desirable, think about velocity along the 
path, ideas of uncertainty about location, 
development response time, agility, and 
other important issues. The idea of optimal-
ity of trajectory now becomes more clearly 
related to innovation over life cycles. This 
optimality may have to do with minimizing 
transit time, response or recovery time, 
resources expended along the trajectory, 
and uncertainty as to position or other 
feedback.

The scope of S*Configuration space thus 
includes not just issues of technical require-
ments and design, but also identity of stake-
holders and models of stakeholder value. 
This means that innovation opportunity is 
a part of this space, and the innovation pro-
cess includes discovery of opportunity and 
purpose, not just design. We are reminded 
that this trajectory includes discovery and 
learning about all three of the subspaces 
in Figure 4, and others, bearing on current 
interest in emergence or discovery of pur-
pose, and “pivoting” (Reis 2011).

This nearly brings us to the point of hav-
ing transformed the view of innovation to 
a view of optimal trajectory guidance in a 
noisy environment, but we still need to add 
the guidance system, as well as arrange-
ments for learning.

The Guidance System: Including the System 
of Innovation in the Model

Based on the above, we now have the tar-
get system, subject to innovation, represent-
ed by a model, having a configuration to be 
guided along an innovation trajectory path 
in system configuration Space. The “guid-
ance system” for that trajectory becomes the 
life cycle management systems of ISO 15288, 
including systems engineering and other 
processes. We are still very interested in that 
ISO 15288 process set, which has great com-
munity-learned reference value, but we can 
also view it in a new light, as follows.

The traditional “vee diagram” view of 
the ISO15288 model (upper part of Figure 
1) focuses on key interdependencies of the 
life cycle management processes, arising 
from the nature of developed systems, and 
with an emphasis on the management of 
those processes. What we will see below 
emphasizes different aspects of the same 
processes — the discovery, learning, and use 
of learning aspects, and how they relate to 
the very same ISO15288 processes. It is a 
different emphasis on the traditional pro-
cesses — not an abandonment of them.

A reference model is shown in Figure 5, 
the agile systems engineering life cycle 
management (ASELCM) pattern, in use by 
the INCOSE ASELCM discovery project 
(Schindel and Dove 2016). It includes three 
major subsystems:

1. System 1: Target system of inter-
est, to be engineered or improved. 
(The system modeled in the earlier 
sections above, whose configuration 
trajectory is to be guided.)

2. System 2: The environment of (inter-
acting with) System 1, including not 
only its operational environment, but 
also all the life cycle management sys-
tems of System 1, including learning 
about System 1 and its environment.

3. System 3: The life cycle management 
systems for System 2, including 
learning about Systems 2 and its 
environment.

Note that System 2 is further divided 
into:

A. Learning and knowledge manager 
for target system: Discovers and 
accumulates new and existing knowl-
edge about System 1 and its operating 
environment.

B. Life cycle manager for target 
system: Uses what has already been 
learned (in A above) about System 1, 
performing all the necessary life cycle 
management processes.

The same sort of sub-division occurs 
for System 3 but concerned with discovery 
and learning about System 2 and its envi-
ronment, and managing its life cycle. So, 
System 3 includes all process improvement 
for System 2.

The ASELCM pattern of Figure 5 shows 
observation and feedback loops. This 
pattern models I nnovation itself, not just 
the innovated thing—and is non-linear, 
iterated, and exploratory as to configura-
tion space. It is a complex adaptive system 
reference model for system innovation, 
adaptation, operation/use/metabolism, 
sustainment, and retirement or replace-
ment. It applies to 100% human-performed 
or automation-aided innovation, or hybrids 
thereof, whether performed with agility 
or not, ISO 15288 oriented or informal, 
and whether performed well or poorly. It 
includes representation of pro-active, an-
ticipatory systems. The rise of a number of 
newer innovation methods and emphases, 
in business and technical systems, supports 
the need for such a combined reference 
model:

1. Agile engineering of systems and 
software (Dove and Labarge 2014, 
Rigby et al. 2016)

2. Product line engineering of compos-
able, configurable systems (INCOSE 
PLE WG 2015)

3. Experiment-based innovation 
(Schrage 2014, Anderson et al. 2011, 
Manzi 2012)

3. System of Innnovation (SOI)

(Substantially all the ISO15288 processes are included in all four Manager roles) 

1. Target System

Target
Environment

2. Target System (and Component) Life Cycle Domain SystemLearning & Knowledge
Manager for LC Managers

of Target System

Learning & Knowledge
Manager for Target Systems

Life Cycle Manager
of LC Managers

LC Manager of
Target System

Figure 5. The ASELCM pattern: top level reference boundaries
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4. Fail fast and recover early (Dove et 
al. 2016)

5. Lean business start up, the minimum 
viable product, and pivoting (Ries 
2011).

Effective Learning: More than “Lessons 
Learned” Reports 

The emerging innovation methods cited 
above particularly emphasize learning, 
whether it is discoveries about stakehold-
ers and their value space, the evolving 
environment, competitive alternatives, 
system concept of operations and technical 
requirements, designs and technological 
characterization, or failure modes and 
design limits. As methodologies couched 
in agility, experiment, pivot, or fail fast 
and recover early, the hallmark of these 
methods is admission that a changing or 
uncertain world creates risks and opportu-
nities in the form of incomplete knowledge. 
Of course, this has always been true, at least 
to some degree, in the world of innovation, 
traditional or otherwise—but the newer 
methods particularly emphasize means 
of accelerating the related discovery and 
learning process, managing related risks.  

Accordingly, strategies for learning are 
of particular importance (Christensen et 
al. 2011, Schindel et al. 2011). This learning 
amounts to filling in more knowledge in 
the models of the configuration spaces 
described above. Because these spaces 
are usually very large, with many degrees 
of freedom and parametric ranges, and 
because exploration, experimentation, and 
learning require expending time and other 
resources, the strategy for picking what to 
learn about, what to invest experiment and 
learning resources in, becomes important.  
The concept of configuration space and 
trajectories through it can help us see this 
exploration as “flying through” the space in 
designated “search patterns”.  Interest in op-
timal strategies (that is, trajectories, routes) 
for exploration of this space becomes a 
natural extension of the theory of design of 
experiments (Fisher 1971), and has become 
the subject of a significant literature on 
experiment, in its own right (Schrage 2014, 
Anderson et al. 2011, Clarke 2016, Kohavi 
et al. 2009, Manzi 2012, Teller 2016, and 
Thomke 2003).

For the systems engineering process, 
there are a number of learning-related 
implications:

1. How is continuous, incremen-
tal learning represented? In the 
approach described above, what is 
already known about System 1 is rep-
resented by the smallest model suffi-
cient for purposes of engineering or 
science. It follows that what is learned 
in the future about System 1 would be 

represented as (incremental) changes 
to that model.

2. Learning must be compressed 
and placed “in the way” of future 
performance: For learning to be 
effective, it must impact future 
behavior. Just “storing” what is 
learned is not the objective, which 
is improved future performance 
about what was learned. So, what 
was learned must be effectively 
incorporated in future performance. 
While the internal means of this are 
somewhat masked by biology for 
individual humans, when it comes to 
teams and enterprises, we must ask 
how learning is to improve future 
performance of the group. We suggest 
that it is not effective to accumulate 
ever-growing sets of “lessons 
learned reports”, even if searchable 
as databases. The INCOSE MBSE 
Patterns Working Group describes 
S*Patterns as the configurable, 
re-usable models of whole target 

systems (INCOSE Patterns Working 
Group 2015). These are subsequently 
configured as the starting point of 
future performance, so that whatever 
has flowed into the patterns becomes 
a (configurable, as needed) part of 
future performance. Think of “muscle 
memory” in humans.

3. Learning in each ISO 15288 
process: Figure 6 shows that the 
ISO 15288 life cycle management 
processes appear twice in System 
2 and twice in System 3. Two of 
those appearances are learning 
processes — they are the learning 
aspect of each of the (already 
defined) ISO 15288 processes. They 
are about learning new things about 
the subject of those processes —
whether they are about stakeholder 
or technical needs, designs, 
verifications, or otherwise. Every 
ISO 105288 process potentially has 
a learning aspect. But each of them 
also has a “non-learning” execution 

3. System of Innnovation (SOI)

(Substantially all the ISO15288 processes are included in all four Manager roles) 

1. Target System

Target
Environment

2. Target System (and Component) Life Cycle Domain SystemLearning & Knowledge
Manager for LC Managers

of Target System

Learning & Knowledge
Manager for Target Systems

Life Cycle Manager
of LC Managers

LC Manager of
Target System

Design: Top System

Design: Subsystem 3
Design: Subsystem 2

Design: Subsystem 1

Realization: Subsystem 3
Realization: Subsystem 2

Realization: Subsystem 1

Realization: Top System

Component Level
Design, Acquisition,

Fabrication

Organizational
Project-Enabling
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Agreement
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Technical Processes

Project Processes

(Adapted from ISO/IEC 15288:2015)
Architecture
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Figure 6. The systems engineering “vee” appears four times in the ASELCM pattern
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only aspect, in which what has already been learned is 
applied. It is not the case that engineering a system requires 
learning. In the case of product line engineering (PLE) for 
configurable platforms, there are rapid-execution versions of 
each of the ISO 15288 processes that essentially “configure” 
what is already defined in the platform pattern, for a specific 
case. The platform and its supporting patterns represent 
what was learned in the past—what we already know.

4. What about what we already know? The traditional 
description of the systems engineering process actually 
describes all the things we would do if we knew nothing 
in advance about a system or its domain. But what about 
what we already know, which is usually quite a lot? Very 
little of the traditional life cycle process description 
addresses that question, nor how it would be blended with 
new learning processes. So, splitting up processes into 
the learning – execution pairs of Figure 5 have the further 
advantage of explicating this important aspect, essential to 
agility.

5. Learning about System 2: These same points, concerning 
System 2’s learning about System 1, will also apply to System 
3’s learning about System 2.

WHAT OPTIMAL CONTROL AND ESTIMATION THEORY CAN TELL US
It is hard to overstate the transformative successes and spread, 

during the last fifty years, of the theory of optimal estimation, with 
related technologies for extracting signals from noisy environ-
ments, and the theory of optimal control, with applications of 
feedback control systems. Among the key modern contributors to 
these underpinnings have been Norbert Wiener (time series, fire 
control systems, feedback control, cybernetics), Rudolph Kalman 
(filtering theory, optimal Bayesian estimation), Lev Pontryagin 
(optimal control, maximum principle), and Richard Bellman (dy-
namic programming). Applications spread from defense fire con-
trol systems, through multi-sensor navigation systems, to control 
strategies implemented in manufacturing, transportation, energy, 
communication, medical, entertainment, scientific instrumenta-
tion, and other domains. Without these accomplishments, much of 
modern life would disappear or shift to much less favorable human 
experience of a century or more earlier (Wiener 1949; Kalman 
1960; Pontryagin et al. 1962; Bellman 1957, 1959; Bryson 1967; 
Bryson and Ho 1975).

These successes have been powered by mathematical 
models of the related (engineered) systems of interest and 
their environments. These include their equations of motion 
(state) and model elements representing measurement, control, 
uncertainty, risk, and feedback. The accumulation of progress 
in the capabilities of related models and technologies stands in 
contrast to the progress of the less formal theories and practice 
of human organizations, business and management, including 
the process and procedure of systems engineering in particular, 
or human-performed innovation in general. While these latter 
human activities have clearly progressed in very important 
ways, they have been supported by less formal descriptions, 
subjective judgement, and human intuition—all of these powerful 
but something different than the above-referenced theory and 
applications of optimal control and estimation. A reasonable and 
expected first reaction would be that they simply do not apply 
in a concrete way, because it has simply not been clear how to 
practically apply those tools to complex problems such as the 
management of development processes. So, the latter have been 
described by informal prose, including prominent examples such 
as the INCOSE Systems Engineering Handbook and the ISO 15288 
life cycle management standard.

Is It Plausible To Apply Optimal Control to the Innovation 
Process?

As the underlying approaches to model-based representations 
of systems are progressing, we may ask whether this progress is 
yet sufficient to help us to apply the more powerful mathematical 
frameworks to the domain of innovation itself. Is it plausible that 
optimal control and estimation might have practical application 
to the innovation process itself? And, if it is, why has this not 
occurred on a widespread basis already?

We first review the nature of these technical frameworks, as they 
have succeeded in their contemporary application domains, then 
ask whether and how they apply to innovation itself.

Optimal estimation theory is based on models of estimation, 
from noisy (corrupted) observations or measurements, of the 
current state of an (also modeled) system, which may itself also be 
driven by random processes. This framework addresses the ques-
tion of how to optimize those estimates, as to their uncertainty. 
Optimal control theory begins with models of a system’s equations 
of motion, including the model of its environment and drivers, 
adds models of control inputs, and asks how to optimize those 
control inputs so as to optimize various objective functions, such 
as trajectory, elapsed response time, frequency response, expendi-
ture of fuel, energy, or other resources, proximity to moving targets 
or set points, or other more complex objective functions. The 
deterministic theory is then extended by adding random processes 
to both system environmental drivers as well as noise-corrupted 
observation processes. Optimal control objectives are then extend-
ed to include uncertainty.

So, how well does the innovation process itself sound like it 
might fit what the theory of optimal control and estimation ad-
dresses? Table 1 (on the next page) compares the application of the 
theory, applied to a guidance system, to the same theory, applied to 
a system of innovation. How are the seemingly different concepts 
of Table 1’s middle and right columns in fact similar? The answer 
is that they play the common roles listed in Table 1’s left column. 
This is similar to the idea that a control system embedded in an 
automobile and embedded in a manufacturing system still depend 
upon the same theoretical foundations from controls theory.

The inspiration of vehicle trajectory control as a trajectory 
metaphor for travel through innovation state space is further 
supported by the vehicle work of (King et al. 2016 and Martinovich 
1988). The typical formulation of the Table 1 left column concepts, 
independent of domain, is in the next section.

Risk-Optimal Control and Estimation: Typical Problem 
Frameworks

Mathematical frameworks of optimal estimation, prediction, 
and control problems, including deterministic and stochastic, 
linear and non-linear, continuous and discrete time, as well as 
combinatorial, have been the subject of extensive attention for de-
cades, resulting in many feedback-based applications in estimation 
and control. While not every class of problem is covered by these 
advances, their range of successes is formidable.

For comparison to Table 1, a typical time continuous problem 
statement framework (discrete forms also available) is as follows 
(Levi 2014, Bryson and Ho 1967):

System defined by: = f (X, U) + W, having system state X(t) Є Rn,  
with control U(t), driven by process W(t); allowing observations  
Y = h(X) + V, Y Є Rn having observation corruption by random 
process V(t).

Find an optimal control U(t) minimizing expected objective  
functional: and describe the means of 
quantifying uncertainty based on model and observation.0

g (X(t), U(t)) dt ,
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In linear, or linearized, cases and for 
discrete time cases, Figure 7 illustrates the 
form of a representative feedback system, 
adapted from Bryson and Ho (1967), where 
the coefficients shown are generated from 
system specifications or learning about 
the random processes from observation 
(Schindel 1972); other aspects quantify how 

uncertainty propagates.
The framework and Figure 7 are 

suggestive, not meant to establish the 
specific form for the innovation problem 
summarized in Table 1. However, the 
annotations added to Figure 7 are practical 
reminders, even in the most non-linear, 
manual human-performed control, of more 

fundamental aspects of management and 
estimation in uncertain environments, 
concerning: 

1. Use of knowledge of managed system 
dynamics to predict future state 
(“dead reckoning” based on beliefs 
about prior state and system behav-
ior)

2. Use of observational data to correct 
what was otherwise believed

3. Relative weighting of (1) versus (2)
4. Steering to desired trajectory goals 

based on current estimated state, 
goal, and beliefs about system re-
sponse dynamics

5. Exploration to improve knowledge/
beliefs of system structure, dynamics, 
stochastics.

Just as these ideas are important in any 
manually human-managed innovation, so 
they can also be important in applying opti-
mal estimation and control to innovation.  

Table 1. Informal comparison of two domains, as a plausibility test

Aspect of Common 
Theoretical Framework 

Application to a Vehicle Guidance 
System Application to a System of Innovation 

Overall domain system Propelled airborne vehicle 
guidance to moving airborne target

Development of new system configuration for a 
system of interest

The controlled system Airborne Pursuit Vehicle The development process

Control system Flight control system and pilot 
sometimes

Development management & decision-making 
process

Other actors Target, atmosphere Stakeholders, operating environment of system of 
interest, suppliers

State space in which 
controlled performance 
occurs

Vehicle position in 3-D geometric 
space

Configuration space of system of interest, including 
its features, technical requirements, and physical 
architecture 

Driving processes Target dynamics, pursuit thrust, 
flight control surface movements Stakeholder interest, supply chain

Random aspects of 
driving processes Buffeting winds Stakeholder preferences, competition, technologies

Observation process 
model

Radar tracking of moving target, 
sensor characterization

Status reporting, market feedback, development 
status report process

Random disturbances of 
observation processes Sensor errors Inaccuracies or unknowables in development 

status; sampling errors

Environmental 
Conditions

Target maneuvers; atmospheric 
effects Market or other environmental conditions; 

Control input Flight control surface orientation Management direction; resources

Objective function to 
optimize Time to target

Time to market; Competitive Response
Time; Innovated System Performance; Innovation 
Risk vs. Reward

Dynamical model Ballistic Flight, Atmospheric 
Effects, Thrust Coupled development processes

Outcome risk Risk of missing airborne target Risk of innovation outcomes across stakeholders
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Figure 7. Form of typical optimal stochastic estimator/controller, in linearized 
discrete time form (adapted from Bryson and Ho 1967 and Schindel 1972)
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Agility as Risk-Optimized Control of 
Trajectory in S*Space

Learning trajectories versus mission 
trajectories. In a dynamic and uncer-
tain environment, the above can help us 
understand how to plan trajectories that are 
optimal with respect to two different goals:

1. Mission response to environ-
ment: Adjusting course (system 
configuration) in a responsive way, to 
perform the base mission, or to im-
prove ability to perform the mission. 
This form of agility exploits what 
is already known (expressed in the 
model), based on basic mission and 
the current or projected operational 
environment.

2. Exploration for learning: This 
goal is concerned with exploring to 
capture additional information to 
improve understanding about (the 
model of) the system of interest or 
its environment, and possibly in the 
presence of random process corrup-
tion of observations as well as ran-
dom processes driving the systems.

(Simkins et al. 2008) illustrates optimal 
control in a mixed exploitation-exploration 
approach. 

Support for experiment selection in 
“fail fast and recover early” risk strate-
gy. When dealing with “moon shot” or 
less familiar areas (for example, early stage 
technologies, early stage market concepts), 
concerns of later stage “too late” discovery 
of infeasibility, financial, or stakeholder 
issues is significant. The literature on “fail 
fast and recover early” innovation suggests 
the strategy of addressing the apparent 
highest risk issues earliest, to eliminate as 
soon as possible what turn out to be infeasi-
ble choices (Teller 2016). This is a much 
different strategy than the WSJF (weight-
ed shortest job first) strategy sometimes 
applied in agile systems engineering to pick 
next increments (Reinertsen 2009).

Gradient-based versus exploratory 
direction. Given a current location in 
S*Space, the principle of optimality (Pon-
tryagin et al. 1962) describes the direction 
of the optimal trajectory from that point, 
assuming reachability from that point. If 

reachability is not assured, then “fail fast” 
experiments such as in the above approach 
are suggested.

Intermediate gain delivery trajectories. 
Even in the case of starting toward a known 
reachable point, though, agile principles 
suggest that the trajectory needs to deliver 
intermediate progress along its route to a 
destination. That is, intermediate points 
along the trajectory need to be sought out 
as intermediate “agile” deliverable configu-
rations that offer incremental improvement 
in their own right, if the objectives require.

Innovation in Populations: Markets, 
Segments, Ecosystems

This approach can also be extended 
beyond trajectories of a single system, by 
considering populations of systems. In 
market or ecological frameworks, systems 
of different configurations of multiply 
instantiated (populated) instances interact 
with other systems in roles acting as preda-
tors, prey, commercial or military compet-
itors, customers, suppliers, infrastructure, 
or others.

The global configuration of the entire 
ecosystem is a point in a higher-dimension 
configuration state space, and the entire 
ecosystem is moving along an evolutionary 
/ innovation trajectory. This problem is 
important to understanding markets and 
ecosystems and includes not only issues 
of development of new system types, but 
also rates of production and distribution 
across global supply networks, as a part of 
the overall innovation model. The diffusion 
of system types (species, product types, 
technologies) across the population may 
be studied in this way. The population 
perspective has been studied at length in 
diffusion of technology (Rogers 2003) and 
proliferation and limits of biological species 
populations (MacArthur and Wilson 1967).

CONCLUSIONS AND FUTURE STEPS
1. Theories of optimal control and optimal 

estimation are based in state space and 
become more applicable to innovation 
strategy when explicit system models 
are used to express system configura-
tion.

2. Geometrization of formal spaces, 
already a source of major insights in the 

history of STEM, when applied to the 
innovation domain brings insight and 
understanding to planning and execut-
ing system innovation.

3. Heuristic practices for innovation 
strategy, agility, risk management, and 
learning may be enhanced by the use 
of mathematical system models of life 
cycle trajectories over innovation cycles.

4. For learning to be effective, the prod-
ucts of learning must be built into the 
roles that will perform future tasks to 
be informed by that learning—“lessons 
learned” filed in reports or searchable 
databases are not really learned in an 
effective sense.

5. Use of models does not replace human 
judgment but enhances it in much the 
same way that STEM has advanced oth-
er human-managed activities, adding 
science and math-based foundations to 
previously intuitive practices.

6. Quantitative understanding of agile, 
fail-fast and recover early, lean, and ex-
periment-based innovation methods is 
enhanced by viewing these through the 
lens of trajectory in configuration space. 
Implications for future pursuit include:

7. How automated engineering tooling can 
be enabled to assist innovation teams 
by improving their decision-making 
around selection of activities;

8. Further exploitation of the historical 
work of (Pontryagin et al. 1962; Bellman 
1957, 1959; and Kalman 1960);

9. Extension of the mathematical theory 
by moving to populations, applicable to 
markets and other ecologies;

10. Incorporation of model verification, 
validation, and uncertainty quantifica-
tion (VVUQ), and related application of 
learned system patterns (PBSE);

11. Enhanced visualization of product life 
cycle trajectories;

12. Simulation of innovation as a dynamical 
system. 
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INTRODUCTION AND BACKGROUND: SIZE MATTERS!

 ABSTRACT
How we represent systems is fundamental to the history of mathematics, science, and engineering.  Model-based engineering 
methods shift the nature of representation of systems from historical prose forms to explicit data structures more directly 
comparable to those of science and mathematics. However, using models does not guarantee simpler representation—indeed a 
typical fear voiced about models is that they may be too complex.
 Minimality of system representations is of both theoretical and practical interest. The mathematical and scientific interest is 
that the size of a system’s “minimal representation” is one definition of its complexity. The practical engineering interest is that the 
size and redundancy of engineering specifications challenge the effectiveness of systems engineering processes. INCOSE thought 
leaders have asked how systems work can be made 10:1 simpler to attract a 10:1 larger global community of practitioners. And so, 
we ask: What is the smallest model of a system?

What Is the Smallest 
Model of a System?

William D. Schindel, schindel@ictt.com
Copyright © 2011 by William D. Schindel.  Published and used by INCOSE with permission.

[Editor:This paper for systems engineering foundations refers to the Systems Engineering Handbook 3rd edition (Copyright 2010 by the 
International Council on Systems Engineering), ISO 15288:2002, and the Systems Engineering Vision 2020 published by INCOSE in 
2007.]

Representation size, purpose, tra-
ditions. This paper discusses pos-
sible (and potentially least) upper 
bounds on the sizes of effective 

representations of systems, for the purposes 
of systems engineering. Compared to tradi-
tional systems engineering approaches, it 
draws more directly on scientific traditions 
for representing behavior as physical inter-
action. Systems engineering is still young, 
and its connections to supporting sciences 
is still evolving rapidly.

Language and compression. This 
subject may appear to be related to the 
language used to describe systems, and 
an interesting thread in the mathematical 
study of description length is whether 
minimality is in a sense independent of 
language (Chaitin 2005, Grunwald, Li and 
Vitany 1997). In any case, systems mod-
eling languages such as SysML® and its 
predecessors provide valuable assets for 
the movement to model-based methods 
(SysML Partners). Our subject here is not 

the machinery of these specific modeling 
languages, but the systems ideas that min-
imal models must address. When used for 
system families (product lines, ensembles), 
the representation described here is subject 
to significant compression by the use of 
patterns. This turns out to provide pow-
erful insights about approaches to major 
practical reductions in the size of systems 
engineering descriptions and processes, 
and about ongoing future evolution of do-
main languages over time. These dynamics 
also suggest that such patterns can be un-
derstood as emergent when the interaction 
rules of the systems engineering process are 
properly arranged.

Practical representation challenges 
of traditional systems engineering. 
Traditional system documentation of 
concept of operations (CONOPS), system 
requirements, design specifications, 
failure mode and effects analysis (FMEA), 
test plans, operations and maintenance 
procedures, and other task-specific system 

representations over the life cycle of a 
system can exceed thousands of pages. This 
does not encourage the engagement of a 
10:1 larger global community of systems 
practitioners. Systems engineers may argue 
that system risks justify these extensive 
descriptions, but the effectiveness of these 
representations may be questioned in 
light of the following typical experiences: 
A requirements document, read by 
three systems engineers, produces three 
interpretations of its meaning — quite a 
different experience from three electrical 
engineers interpreting a properly 
constructed electrical schematic diagram. 
Whereas the discovery of an ambiguity 
in a schematic “blueprint” is considered 
exceptional (or even machine-checkable 
in some cases) ambiguities in “system” 
requirements documents are commonplace 
and frequently tolerated as the state of the 
systems art. Determining completeness and 
consistency of (or otherwise interpreting) 
a specification document is frequently a 
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highly subjective assignment, requiring 
very experienced human reviewers. Model-
based representations are a hoped-for way 
to address this challenge, but it is not yet 
obvious whether these are sufficient for an 
order-of-magnitude positive benefit to the 
overall systems process.

Systems engineering process versus 
systems engineering data.  This paper’s 
perspective will shift between the systems 
engineering process (a system in itself), 
versus information about the target 
system (which flows through the systems 
engineering process system), and how the 
two are related. The systems engineering 
process is frequently described (ANSI/EIA-
632-1998, ISO/IEC 15288 2002, Haskins 
2010), but the system representations it 
produces and consumes (our main subject 
here) remain a key challenge. We argue that 
the target systems information is the more 
fundamental issue to solve, after which 
the resulting implications for the systems 
engineereing process can be addressed in a 
new light.

Complexity science. Complexity, a 
seemingly intuitive idea, has become the 
subject of formalization and study, includ-
ing both the natural and human-engineered 
world. Initial efforts sought a theoretical 
basis for expressing complexity measures 
or otherwise understanding complexity, 
including the size of minimum system 
descriptions (Li and Vitany 1997, Chaiten 
2005, Kauffman 2000). They have more 
recently turned to the practical implications 
of emergent complexity science for engi-
neering processes (Bar-Yam 2003b, 2005, 
Braha et al. 2006, Kuras and White 2005, 
Schindel 1996). Some efforts have studied 
minimal information required to describe a 

system, as a measure of its complexity. Oth-
ers have introduced “complex systems engi-
neering” (CSE) terminology in connection 
with understanding engineering problems 
or classifying systems, in situations such as 
highly interconnected systems (networks), 
adaptive systems, systems embedding hu-
mans, issues of scale and scope, ideas about 
types of emergence, or engineering project 
failures (Braha et al. 2006, Bar-Yam 2003b). 
Some studies have focused from the outset 
on the problems of human engineering or 
other organic intentional processes in con-
nection with complex engineered systems 
(Ashby 1957, INCOSE HSIG). There is a 
growing awareness of connections between 
systems engineering and systems science. 
INCOSE formed the System Science 
Enabling Group, and later the Systems 
Science Working Group (INCOSE SSWG), 
in recognition of the connection between 
systems science and systems engineering.

System patterns. Ideas of “patterns” have 
a number of connected roots in science 
and engineering. Pattern recognition and 
classification have a mathematical theory 
and engineering practices (Duda 2001). 
Patterns in engineered systems were 
recognized in building architecture, later 
inspiring software engineers, and more re-
cently systems engineers (Alexander 1977, 
Gamma et al. 1995, Haskins 2005, Cloutier 
and Verma 2007, Schindel 2005b). Initially 
expressed using traditional engineering 
structures (for example, prose templates), 
patterns were later combined with mod-
el-based systems engineering (MBSE) to 
lead to pattern-based systems engineering 
(PBSE) (Schindel and Smith 2002, Schindel 
2005b).

CONSTRUCTING EFFECTIVE AND EFFICIENT 
REPRESENTATIONS

Using models. Model-based repre-
sentations have a traditional engineering 
role in verifying that designs will satisfy 
requirements, or otherwise representing 
system behavior (Karayanakis 1993). More 
recently, model-based representations have 
been used to represent system require-
ments (Mellor 2002, INCOSE MBSE, 
Schindel 2005a, SysML Partners, Estafan). 
In the earlier and more established design 
verification case, “model” frequently refers 
to mathematical descriptions of system 
physical make-up, often modeling from 
first principles to create mathematical de-
scriptions that can be analyzed or simulat-
ed. In the more recent system requirements 
case, “model” extends this idea to describe 
desired functional behavior.

In both cases, the term “model” means 
a formal (according to agreed upon rules), 
explicit (core content not implicitly de-
pending on other assumed knowledge), 
and unambiguous (not subject to multiple 
interpretations) description. As shown in 
Figure 1, there are three components in 
a model-based engineering setting: The 
model, the system modeled, and the model 
interpreter(s). We want the model to be 
interpreted with desired process outcomes 
(for example, easy, consistent, and unam-
biguous interpretation, optimality of de-
sign, etc.). Global efforts (ISO 10303 AP233 
and Mellor 2002) are working toward the 
exchange and interpretation of model data 
by machines and people, for purposes of 
simulation, procurement, fabrication, code 
generation, etc.

The “third role” (model interpreter) in 
Figure 1 has vital significance here. The 
effectiveness of a model means how well it 
serves the purposes of the model inter-
preter. If we expect to engage a 10:1 larger 
community of systems practitioners, and 
make the systems process 10:1 easier, then 
we must learn how to make the model in-
terpreter’s tasks easier and more appealing, 
and for a much larger global population. If 
we only develop automated approaches to 
deluge the human model interpreter with 
information, we won’t have the outcome 
needed.

A metamodel. A metamodel is a model 
of other models — a framework or plan 
governing the models that it describes. We 
utilize the S*Metamodel (summarized by 
Figure 2), a relational/object information 
model used in the Systematica™ methodol-
ogy to describe requirements, designs, and 
other (verification, failure analysis, etc.) 
information in S*Models. These may be 
represented in SysML®, database tables, or 
other languages. We have applied these to 
systems engineering in mil/aero, transpor-

describes
Model

AP233

(Machine Interpreters) (Human Interpreters)

Modeled Thing

Modeled Interpreter

Figure 1. The setting for model-based systems engineering
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tation, communication, medical and health 
care, consumer products, construction, 
manufacturing, and as a framework for ed-
ucating new engineers (Gunyon et al. 2010; 
Bradley et al. 2010; Schindel and Smith 
2002; Schindel 2002, 2005b; and Ahmed et 
al. 2011).

S*Models describe the external 
(black box) behavior of target systems 
twice — once in the subjective (stakeholder) 
language of stakeholder-valued behavior, 
and again as more objectively-described 
technical behaviors.

Stakeholders features. S*Models repre-
sent system stakeholder features as explicit 
objects. For example, some of the features 
of an oil filter are represented in Figure 3:

than, but also no more than, the feature 
model. (This is based upon the practice 
of including all significant stakeholders 
and their features in the feature model.) 
If we find a compelling argument for why 
technology X or architecture Y is the right 
(or wrong) choice, the reason why can only 
be to better accommodate the stakeholder 
features — trade space is exclusively 
“scored” in the metrics of these features. A 
common mistake is to defend choices in 
technical trade-off spaces that are short of 
the actual stakeholder feature space.

Suppose further that we are perform-
ing an FMEA. It turns out that the only 
“effects” (the E part) that can appear in an 
FMEA are failures to deliver on the promise 
of a stakeholder feature. As soon as we 
know the feature space of system, before a 
design has been synthesized, we can already 
fill out the “effects” column of the FMEA 
analysis (Schindel 2010). However, it is not 
universal practice to align or audit FMEA 
and stakeholder feature models.

Feature space is integrated with technical 
requirements space by the negotiation of 
the features-interactions relationships — to 
begin with, a two-column table negotiated 
jointly by representatives of the stakehold-
ers and the technical community. Feature 
space is typically of lower dimension 
than the more technical spaces of system 
requirements or design. This means that 
once we have constructed an integrated 
feature-interactions-roles-requirements 
model (traced by Figure 2), we can “config-
ure” (automatically populate) good starting 
point draft requirements configurations: 
populating lower dimension features can 
“automatically” populate higher dimension 
requirements through the constraints of the 
model.

We have repeatedly seen the use of fea-

ture models dramatically improve align-
ment and facilitate constructive discussion 
of cross-functional teams. For example, a 
powerful use of feature space is to express 
impact assessments on the introduction of 
new technologies into operations envi-
ronments, or to express system long range 
or facility master plans first in terms of 
features (stakeholder capabilities) planned 
and only second in terms of the equipment, 
technologies, or projects that will imple-
ment them. Likewise, risk to stakeholders 
(whether financial risk, schedule risk, 
technical risk, or otherwise) is represented 
by features.

All this suggests that feature models are 
often under-utilized in the rush to technical 
requirements. Note that feature models are 
formal even though they are in the (sub-
jective) language of stakeholders. There is a 
difference between informally stated stake-
holder “needs” (in the original voice of the 
customer) and formally translated (but still 
stakeholder language and concept) features. 
A quick pass through “stakeholder needs” 
on the way to technical requirements is less 
than the minimal Features model we are 
suggesting here.

Feature space is an interesting place. It is 
the gateway to other communities beyond 
our engineering organizations, and for that 
reason may be seen as a strange or unfamil-
iar language and environment. But it rep-
resents improved connection to those who 
pay the bills, buy the products, or whose 
lives depend on the engineered system. 
Bridging this cultural gap may be challeng-
ing but is the reason that S*Models are dual 
rooted in both of the “two cultures” (C.P. 
Snow, S. J. Gould). When INCOSE thought 
leaders advocate that we look for ways to 
engage order-of-magnitude larger segments 
of the global community in systems work, 
modeled feature space, in model views 
appropriate to the viewers, are a related 
enabler.

Interactions. S*Models represent 
physical interactions as explicit objects at 
the very core of systems engineering. For 
example, Figure 4 shows interaction objects 
for an oil filter— these summarize the 
physical interactions of an oil filter with its 
environment, over its life cycle.

Interaction models exist at two levels of 
detail. The high-level interaction model 
simply consists of the name and definition 
of the interaction, a list of the parties that 
participate (play roles) in the interaction, 
and the major attributes of the interaction. 
These named interactions also appear 
within the system’s state model, and that 
combination very compactly expresses the 
overall modeling of the system’s behavior 
with its environment, over its life cycle. 
The detail level interaction model includes 
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Figure 2. A summary view of the S*Metamodel
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Figure 3. Features of an oil filter

We could simply claim that a minimal 
model of an engineered system must 
include a (feature) model of all the things 
valued by all the system’s stakeholders. 
However, there is more to this than 
meets the eye. Features have a way of 
creeping into many different engineering 
conversations and artifacts, not always 
recognized for their redundancy. Note that 
every design decision, every trade-off, every 
value engineering or project argument 
should ultimately depend upon no less 
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an interaction diagram (of which there 
are many specific forms in SysML or other 
modeling languages) for each interaction, 
showing the input-outputs exchanged 
between the interacting actors, and 
including the requirements statements that 
describe the roles in the form of “nonlinear 
transfer function” relationships between the 
inputs and outputs (Schindel 2005). Refer 
to Figure 5.

or more components playing logical roles. 
The “emergent” properties of the interac-
tion are associated with the whole, not any 
single component. Behaviors of individual 
components are described by requirements 
statements as input-output characteristics 
of their roles (Schindel 2005a). Notice the 
difference in perspective of Figure 6.

By now it is well-known that simple 
behaviors by individual components (or 
“agents”, in the popular parlance), when 
they interact with each other, may lead to 
“emergence” of surprisingly more complex 
behavior by the combined system (for 
example, the three body problem, cellular 
automata, swarms, traffic, etc.). The differ-
ence between the simple “rules” (behavior 
of the actors) and the more complex emer-
gent system behavior is nothing more and 
nothing less than the difference between 
describing a functional role in an interac-
tion and the interaction as a whole — it is a 
difference of night and day.

We have repeatedly observed a profound 
practical difference between systems engi-
neering modeling interactions as illustrated 
by Figures 5 and 6, versus modeling of 
SIPOC required behavior as in Figure 6. We 
have seen this difference have major practi-
cal impact in numerous systems engineer-
ing projects, in which the modeler either 
did or did not model the whole interaction, 
including “what the operator did” (Schindel 
2006), “what the material did” (Schindel 

2011), or other actor behaviors.
Minimality of representation. The 

S*Metamodel arose over time from the 
research question, “What is the smallest 
amount of information required to describe 
system level requirements and design?”, 
combined with practice application. We 
won’t reproduce here the formal argument 
for minimality of S*Models — interested 
readers may contact the author. However, a 
summary of that argument is:

 ■ The sufficiency of S*Models of 
requirements and designs is argued, 
with respect to intended use of the 
information. Here the uses of systems 
engineering information enter, including 
considerations of risk and opportunity.

 ■ The minimality of S*Models is estab-
lished by showing that no metaclass 
(see Figure 2) of information in an 
S*Model is redundant with information 
in another metaclass, and showing that 
omission of any component results in 
loss of sufficiency — including classes 
versus instances.

This argument makes use of a mapping 
of which S*Model components (grouped 
across the top of Table 1) are needed for the 
different SE process areas (summarize by 
the Table 1 rows).

This table can be constructed for the 
various systems enginering process areas 
of ISO15288 or the INCOSE Systems 

Figure 4. Interactions of an oil filter
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Interaction models go to the heart of 
what we mean by “system” in the engi-
neering and scientific world and expresses 
ideas of emergence. By “system,” we mean 
a collection of interacting components. By 
“interact,” we mean that one component 
impacts the state of another component. By 
“state,” we mean a property of a component 
that impacts its current or future behavior. 
By “behavior”, we mean a component’s 
interactions with other components. This 
is the intentionally circular, relational per-
spective of the trained scientist, engineer, 
or mathematician that has helped describe 
the natural world since Newton. In this per-
spective, an interaction is holistic, with two 

Figure 6. Two different starting points: systems as interacting components versus a 
SIPOC perspective

System

System
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Engineering Handbook. However, later in 
this paper we will also discuss an alternate 
way to view systems engineering process 
areas. (Why would we want to do that? The 
answer depends on whether we expect a 
much larger global population to become 
traditional systems engineers and take 
up the traditional systems engineering 
processes.)

The above minimality argument is 
“constructive”: Rather than arguing that a 
minimal model exists, we actually con-
struct it—not the case in most algorithmic 
information theory. However, this argument 
does not assert uniqueness: There may be 
other models no larger that also represent 
the same system.

MODEL VIEW; USEFUL REDUNDANCY.
A familiar challenge is that different 

“systems engineering documents” may be 
inconsistent with (contradict) each other: 
This is because they contain redundant 
information. As documents evolve, that 
consistency must be maintained to be 
consistent across the documents. Refer 

to Figure 7. This issue also occurs within 
single documents (self-consistency). There 
are good (task-oriented) reasons why these 
documents should be redundant—but not 
why they should be inconsistent.

This is one reason why database tools are 
powerful in systems engineering. Properly 
used, they can generate different “views” 
(documents, etc.) from the common 
underlying data model, thereby improving 
their consistency (see Figure 8).

The S*Model goes farther, by pointing 
out redundancies not always recognized; 
for example,

 ■ FMEA functional failures vs.  
requirements (counter-requirements) 
(Schindel 2010)

 ■ FMEA failure effects vs. stakeholder 
features (noted earlier above)

 ■ ICDs vs. system requirements
 ■ CONOPS and use cases vs. system 
requirements, features.

Table 1. Systems engineering process areas vs. metamodel information areas

Systems Engineering 
Area Grp1 Grp 2 Grp 3 Grp 4 Grp 5 

HLR X     

DLR/BB X X    

DLR/WB X X    

HLD X X X   

FMEA X X X X  

TST X X X X X 

Concept of
Operations
(CONOPS)

Requirements
Document

Interface
Control

Document (ICD)

Operations &
Maintenance
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Figure 7. Redundant documents—consistent or inconsistent?

Figure 8. Generation of (redundant) views from a non-redundant database
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Such “redundancies” are really deep in-
sights that make model construction easier 
and reinforcing: We can still produce all 
these views, but with less effort and greater 
consistency.

Measures of model complexity. Models 
communicate information, as quantified in 
communication theory (Shannon 1963). 
More recently, complexity of objects has 
been quantified in algorithmic information 
theory (AIT or Kolmogorov complexity) 
using the “smallest program” capable of 
constructing the object or its behavior (Li 
and Vitany 1997, Chaiten 2005). The mini-
mality of S*Models (measured in bits) also 
have several practical sides:

 ■ Clarifying “too small” versus “big 
enough” models: The S*Metamodel re-
minds us of types of systems engineer-
ing information that, if omitted, will 
leave us with an incomplete description 
of a subject system’s requirements, 
design, or connecting relationships. A 
practical example is the use of states 
in a requirements model, reminding 
us that for any requirement statement, 
“when does this requirement apply?” is 
a fair (and often not explicitly an-
swered) question. We may omit this 
information for pragmatic reasons, 
but are reminded of what we have not 
communicated.

 ■ Reducing redundancy and associated 
inconsistency: Although documents 
or other task-oriented views generated 
from an S*Model may be redundant, 

the information in an S*Model is not. 
The consistency of a large number of 
redundant derived documents and 
views is easier to maintain or check 
against a single minimal model.

So, how big? How does an S*Model-based 
compare in size to a traditional systems 
engineering prose-based description? A 
practical discovery is that a typical S*Model 
of technical requirements is more complete 
than a corresponding traditional technical 
requirements document. Being more 
complete, it is bigger, not smaller! Figure 9 
illustrates some typical sizes. Keep in mind 
the original question was: What information 
is essential?

USING PATTERNS TO COMPRESS MODELS
The “starting from scratch” systems 

engineering process delusion. One of the 
most significant causes of perceived com-
plexity of the systems engineering process is 
the fact that most descriptions of the process 
seem to (implicitly) involve an assumption 
(judging from the steps they describe) that 
is nearly always false for real projects — that 
the project is “starting from scratch” in a 
“clean sheet” engineering project on a system 
for which there are no significant historical 
precedents. Accordingly, the process system-
atically seeks out the needed information 
and processes it into a form usable by the 
project (ISO/IEC 15288, INCOSE Systems 
Engineering Handbook).

Figure 10. Families of systems—whether generations or product lines

Figure 9. Typical sizes for models and traditional systems engineering documents
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On the contrary, real projects are 
most often concerned with engineering 
similar (but different) systems across 
different product generations, applications, 
configurations, or market segments. At 
the very least, we are typically engineering 
whiz-bang product X as the latest 
improvement in a long line of previous 
products in the same domain — but 
with some new differences, big or small. 
In some cases, we are even planning a 
product line of related products as a whole 
(see Figure 10).

In spite of this reality, very little of the 
descriptions of the systems engineering 
process is typically about more efficiently 
leveraging what we already know about the 
target systems. Typically, these descriptions 
make some mention of consulting 
documents or lessons learned about 
similar projects, but very rarely is there a 
procedural discipline focused specifically on 
engineering of what we could call “variable 
sameness.” Something more than a database 
of useful past requirements or cloning the 
last project document from the engineer’s 
desk drawer (a dominant paradigm) 
is suggested here — an equivalent to 
perturbation theory in mathematics.

Pattern-based systems engineering 
(PBSE). Over several decades, we have 
developed and practiced what we call 
pattern-based systems engineering (PBSE) 
across a range of domains, including carrier 
grade telecommunications, engines and 
power systems, automotive and off road 
heavy equipment, telecommunications, 
military and aerospace, medical devices, 
pharmaceutical manufacturing, consumer 
products, and advanced manufacturing 
systems (Schindel and Smith 2002, Schin-
del 2005b, Bradley et al. 2010). Engineers 
in all of these and many other domains 
spend most of their company’s engineering 
resources developing or supporting systems 
that virtually always include major content 
from repeating system paradigms at the 
heart of their business (for example, core 
ideas about airplanes, engines, switching 

systems, etc.). In spite of this, the main 
paradigm apparent in most enterprises to 
leverage “what we know” is to build and 
maintain a staff of experienced technolo-
gists, designers, application engineers, or 
other human repositories of knowledge. 
There is typically little evidence of a “Max-
well’s Equations” of first principle-based 
discipline of “variable sameness” in the 
engineering of these systems.

Although engineering “patterns” already 
have precedent in systems and software 
engineering (Gamma 1995, Alexander 
1977, Haskins, 2005, Cloutier and Verma 
2007), these are often relatively informal 
approaches to capturing and re-applying 
certain general ideas, supporting by tem-
plates of one sort or another. By contrast, in 
PBSE what we are doing is to extend MBSE 
through the use of formally configurable 
and re-usable systems engineering models. 
Specifically, an S*Pattern is a re-usable, 
configurable S*Model of a family (product 
line, set, ensemble) of systems.

Pattern configurations. Such patterns 
are ready to be configured to serve as 
models of individual systems in projects. 
“Configured” here is specifically limited to 
mean that pattern model components are 
populated /de-populated, and that pattern 
model attribute (parameter) values are 
set—both based on configuration rules that 
are part of the Pattern. Patterns are based 
on the same metamodel as “ordinary” 
models.

Because of this disciplined approach 
to “configuration” as a limited case 
of specialization, relatively dramatic 
simplifications can frequently occur in 
the typical engineering process. A table 
of configurations illustrates how patterns 
facilitate compression. The rows of the 
table represent aspects of the model 
such as stakeholder features and their 
attributes, functional roles, requirements 
attributes, design components, interfaces, 
etc. (See Table 2).

A different way to organize systems 
engineering processes: PBSE offers us a 

different (and potentially simpler) way to 
view the organization of the systems engi-
neering process areas. Instead of dividing, 
them by their ISO 15288 type functionality 
first, we can divide them into two major 
processes (see Figure 11):

 ■ Pattern management process: Generates 
the underlying family model, and peri-
odically updates it based on application 
project discovery and learning.

 ■ Pattern configuration process: Config-
ures the pattern into a specific model 
for application in a project.

The second of these two processes may 
well contain what could be viewed as out-
come equivalents to the ISO 15288 process 
areas, but they can be viewed in a much 
different light if they are first each asking 
how to produce their products from what 
is already known (the patterns that govern 
the target system – not the engineering 
process). Much of the more complex formal 
machinery of systems engineering can 
then be “hidden” in the other process — the 
pattern management process, in which a 
much smaller number of people’s efforts 
are leveraged by a larger population in the 
second process. In this approach, patterns 
become valued IP, and are sometimes even 
financially capitalized as a form of “soft-
ware.”

As a start toward “thermodynamics of 
patterns”, the Gestalt Rules (Schindel 1997) 
describe what it means for a holistic system 
model to either conform to or not conform 
to a more general holistic system model. 
For example, if we develop state models of 
aircraft over mission profiles that include 
preparation, take-off, climb, cruise, combat, 
return, landing, etc., then how can we com-
pare fixed-wing, helicopter, VTOL, civil, 
and other aircraft?

Compression of models, using pat-
terns. Each column in the table is a com-
pressed system representation with respect 
to (“modulo”) the pattern. The compression 
is typically very large. The compression 
ratio tells us how much of the pattern is 
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Lawnmower Product Line: Configuration Table

Units Walk-Behind Walk-Behind Walk-Behind Riding Riding Riding Mower Autonomous

Push Mower Mower Self-Propelled Rider Tractor Tractor Autonomous

Push Mower Self-Propelled Wide Cut Rider Lawn Garden Auto Mower

Model Number M3 M5 M11 M17 M19 M23 M100

Market Segment Small 
REsident

Medium 
Resident

Medium 
Resident

Large 
Resident

Large 
Resident

Home 
Gardn

High End 
Suburban

Power Engine Manufacturer B&S B&S Tecumseh Tecumseh Kohler Kohler Elektroset

Horsepower HP 5 6.5 13 16 18.5 22 0.5

Production Cutting Width Inches 17 19 36 36 42 48 16

Maximum Mowing Speed MPH 3 3 4 8 10 12 2.5

Maximum Mowing Productivity Acres/Hr 1.6

Turning Radius Inches 0 0 0 0 126 165 0

Fuel Tank Capacity Hours 1.5 1.7 2.5 2.8 3.2 3.5 2

Towing Feature x x

Electric Starter Feature x x x x

Basic Mowing Feature Group x x x x x x x

Mower No. of Anti-Scalping Rollers 0 0 1 2 4 6 0

Cutting Height Minimum Inches 1 1.5 1.5 1.5 1 1.5 1.2

Cutting Height Maximum Inches 4 5 5 6 8 10 3.8

Operator Riding Feature x x x

Grass Bagging Feature Optional Optional Optional Optional Optional Optional

Mulching Feature Standard Factory 
Installed

Dealer 
Installed

Aerator Feature Optional Optional Optional

Autonomous Mowing Feature x

Dethatching Feature Optional Optional Optional

Physical Wheel Base Inches 18 20 22 40 48 52 16

Overall Length Inches 18 20 23 58 56 68 28.3

Overall Height Inches 40 42 42 30 32 36 10.3

Width Inches 18 20 22 40 48 52 23.6

Weight Pounds 120 160 300 680 705 1020 15.6

Self-Propelled Mowing Feature x x x x x x

Automatic Transmiss. Feature x

Financials Retail Price Dollars 360 460 1800 3300 6100 9990 1799

Manufacturer Cost Dollars 120 140 550 950 1800 3500 310

Maintenance Warranty Months 12 12 18 24 24 24 12

Product Service Life Hours 500 500 600 1100 1350 1500 300

Time Between Service Hours 100 100 150 200 200 250 100

Safety Spark Arrest Feature x x x x x x

Table 2. Pattern configuration table

variable and how much fixed, across the 
family of potential configurations. Refer to 
Figure 12.

Connection to minimum description 
length (MDL) theory. In MDL and 
Kolmogorov complexity theories applied 
to complexity, there is an idea of the 
representation of a system “modulo” 
a certain language used to describe it. 
Likewise, in PBSE, the configuration of a 
pattern is a “description” of that system 

within the space of systems governed by 
that pattern. If we assume that the pattern 
itself is already known or accepted, then 
the configuration information becomes a 
(much shorter) description of “where in the 
pattern space the particular configuration 
is,” tying down the degrees of freedom 
offered by the pattern.

If the language that emerges from a 
pattern is extremely flexible (for example, 
English prose), then the degrees of freedom 

are very large indeed, and the configuration 
data itself must be extensive. But, if the 
pattern is based on a construct like the 
S*Metamodel, then the domain-specific 
systems engineering language that emerges 
from that pattern is orders of magnitude 
more restrictive, and the configuration 
information is accordingly much simpler 
and easier to understand, analyze, and 
communicate.
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ALL MODELS ARE CONFIGURATIONS OF MORE 
ABSTRACT PATTERNS

We arrive at a core idea for simplifying 
the systems engineering process. Instead of 
asking how to adopt all the sophisticated 
machinery of formal PBSE, we can alterna-
tively realize that all models are configura-
tions of more abstract patterns, whether we 
formalize those patterns are not. Moreover, 
even non-MBSE engineering projects are 
in fact creating informal “configurations” 
of informal “patterns” every day and have 
been all along. As evidence of this, consider 
all the “important known stuff ” that we 
don’t always write down in projects — the 
content of industry and enterprise stan-
dards comes first to mind. We “invoke” 
these by reference, but we rarely import 

explicitly all of their content into our 
specifications. They become stacks of addi-
tional “side” documents that vex designers, 
suppliers, and others who must conform to 
them or verify conformance.

What is missing in (most but not all of) 
these traditional approaches is a sufficient 
machinery to truly configure these patterns 
of “external” data for a given project. At 
best, we might typically see citations of par-
ticular sections of these documents that are 
chosen to apply. More typically, we are left 
to wonder which parts of these stacks may 
apply and which do not. By adopting some 
of the simplest elements of PBSE discipline, 
once onerous processes can become assets, 
as we move more rapidly with configu-
ration data, supported by less frequently 

Figure 12. Pattern compression
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consulted (but nevertheless available when 
needed) “pattern” information in these 
other references.

CONCLUSIONS
1. The specific MBSE and PBSE 

methods discussed here have been 
successfully applied across a wide 
range of domains: transportation, 
mil/aero, communications, medicine/
healthcare, advanced manufacturing, 
consumer products.

2. The minimum base of information 
required to perform specific systems 
engineering process areas is greatly 
clarified by MBSE metamodel under-
standing.

3. Minimal MBSE models contain 
information missing from many 
projects, causing practical project 
problems.

4. Minimal underlying models generate 
the redundancies needed across 
different task-based artifacts, with 
greater consistency or less effort to 
maintain that consistency.   

5. Formalization of patterns as config-
urable models leads to further size 
compression: configurations.

6. All models are actually 
configurations of more abstract 
patterns. Realizing and exploiting 
this can turn the previous 
“deadweight” of standards and other 
external references into powerful 
assets for accelerating work. 
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