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e are pleased to publish the 
December 2024 INSIGHT 

published cooperatively with 
John Wiley & Sons as the sys-

tems engineering practitioners’ magazine. 
The INSIGHT mission is to provide infor-
mative articles on advancing the practice of 
systems engineering as the state-of-the-art 
advances as evidenced in Systems Engineer-
ing, the Journal of INCOSE also published 
by Wiley, as well as papers presented at 
symposia and conferences by INCOSE and 
in the broader systems community.

The focus of this December issue of 
INSIGHT themed on uncertainty and 
Bayesian methods continues the systems 
engineering theoretical foundations and its 
impacts on practice in the April, August, 
and October 2024 issues of INSIGHT 
featuring the contributions of the “Bridge 
Team” (April) and the MBSE Patterns 
Working Group (August and October).

The imperative for systems engineering 
to address uncertainty is clearly called 
out in  The Systems Engineering Vision 
2035: Engineering Solutions for a Better 
World  ©2021 by INCOSE (www.incose.org/
publications/se-vision-2035) .

The Vision 2035 section Foundations 
(page 22):

Practicing systems engineers use a va-
riety of analytical tools that are based on 
math and science. This requires competen-
cies in the foundational math and science 
that is needed to analyze the systems of 
interest, and the enabling systems used to 
manufacture and support the systems. The 
systems engineer also must understand 
how to use probability and statistics to 
understand risk and uncertainty, and 
understand principles such as coupling 
and cohesion to manage systems complex-

William Miller, insight@incose.net

FROM THE 
EDITOR-IN-CHIEF
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W ity. For cyber-physical systems, a systems 
engineer of today must also have a basic 
understanding of control theory and com-
munications.

The Vision 2035 section Specific Rec-
ommendations (to Systems Engineering 
Community) (pages 59-60):

Addressing Dynamic Change and 
Uncertainty

 ■ Data standards are developed and 
adopted enabling effective data 
interconnection and exchange.

 ■ Methods and tools for dealing with 
product variation and variability are 
widely adopted.

 ■ Knowledge Management and 
incremental learning are integrated 
with systems engineering practices.

 ■ Systems engineering incorporates 
dynamic feedback into solutions across 
the life cycle (such as Agile practices).

 ■ Increasing technology assistance for 
human tasking is incorporated including 
automated workflows.

Foundations and Research
 ■ New principles, phenomena, concepts, 
heuristics, and technologies are 
integrated with existing knowledge.

 ■ Research to define and validate the 
systems engineering Theoretical 
Foundations is launched.

 ■ Research on systems engineering 
practices, tools, and applications 
that address dynamic change and 
uncertainty is facilitated.

 ■ Industry, government, and associations 
team with academia to further systems 
engineering research and incorporate 
systems engineering foundations into the 
curriculum.

 ■ Systems engineering research encourages 
cross-disciplinary engagement to move 
towards integrated approaches.

The imperative to address ‘uncertain-
ty’ is a priority of the Future of Systems 
Engineering (FuSE) initiative to realize 
the System Engineering Vision 2035. Your 
editor also serves as the lead for the FuSE 
initiative and has been appointed the Assis-
tant Director, FuSE in INCOSE Technical 
Operations to strengthen the relationship 
within our technical community. FuSE is 
empowered by the INCOSE Strategic Plan 
v1.0 (17 June 2024) Objective O.1 Advance 
systems engineering as the world’s trusted 
authority and Key Result KR1.1 Satisfac-
tion of/progress against future of systems 
engineering roadmap.

Your editor searched for ‘uncertainty’ 
in the ensemble of 4955 artifacts in the 
INCOSE content library of symposia 
papers, regional conferences, and webinars, 
retrieving 80 hits of which the great 
majority are symposia presentations and 
papers, and a few webinars. Most hits 
invoked the word ‘uncertainty’ without 
exposition; only a few went into the 
details of theory, methodology, practice, 
or examples. Searches for ‘probability’ 
yielded 35 hits and ‘Bayesian’ yielded 11 
hits, the great majority of which are also 
without exposition. A stereotype of systems 
engineers is that we are uncomfortable 
with uncertainty from many anecdotal 
conversations with systems engineering 
colleagues in industry, government, and 
academia.

Yet, there is documented evidence that 
systems engineers have accounted for 
uncertainty in the engineering of systems 
beginning back in the early 20th Century 
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(CE). Goode and Machol expounded on 
accounting for probability (uncertainty) 
including the application of Bayes law, in 
System Engineering: An Introduction to the 
Design of Large-Scale Systems ©1957. An 
illustrative case study in their textbook 
is the telephone system, that is, the Bell 
System engineered by the Bell Telephone 
Laboratories, that achieved mandated 
quality of service objectives given dynamic 
uncertainties in demands for service, wide 
variations in environmental conditions in 
operations, dynamic regulatory constraints, 
technology constraints, and exponential 
growth that drove research and innovation 
in technologies progressing from manually 
operated switchboards to automatic systems 
progressing from electro-mechanical relays, 
to vacuum tubes, to discrete transistors, 
to integrated circuits, and to computer 
and software based digitization across the 
enterprise. Similarly, communications 
transmission progressed from copper 
wires, to multiplexed copper wires, to coax 
cable, to microwave radio, to fiber optics, 
to cellular radio frequency for mobility. 
All while maintaining interoperability 
across the ensemble of technologies! Hall’s 
A Methodology for Systems Engineering 
© 1962 documented theories, methods, and 
applications innovated and practiced at Bell 
Labs for the Bell System, also accounting 
for uncertainty. Lastly, Systems Architecture: 
Strategy and Product Development for 
Complex Systems by Crawley, Cameron, 
and Selva © 2016 describes NASA’s Apollo 
tradespace that assessed the probability of 
mission success compared to total mass for 
different mission concepts: direct (to the 
Moon and back), Earth-orbit rendezvous 
(EOR), lunar-orbit rendezvous (LOR), 
and EOR+LOR, with LOR selected as 
the concept (pages 311- 317). For further 
exposition on risk and uncertainty by 
NASA, their Probabilistic Risk Assessment 
Procedures Guide for NASA Managers and 
Practitioners (NASA/SP-2011-3421, Second 
Edition, December 2011) is available online 
(https://ntrs.nasa.gov/citations/20120001369). 
The Artemis Missions Probabilistic Risk 
Assessment (PRA) & Reliability Assessment 
Overview (July 26, 2023) back to the Moon 
is also available online (https://ntrs.nasa.
gov/api/citations/20230010735/downloads/
Artemis%20PRA%20and%20Reliability%20
Overview.pdf ).

We lead the December INSIGHT with 
“Uncertainty Quantification (UQ) in 
Complex System of Systems (SoS) Model-
ing and Simulation (M&S) Environments” 
by Joseph Marvin, Thomas Whalen, 
Brad Morantz, Ray Deiotte, and Robert 
K. Garrett, Jr. The authors apply systems 
thinking to modeling and simulation 
(M&S) techniques to provide meaningful 

quantitative results in M&S of complex 
system of systems (SoSs) in the face of an 
environment filled with complex interact-
ing uncertainties. They present a five-step 
statistical and parametric algorithm tool 
that addresses uncertainty quantification 
(UQ), proposing a quantitative approach 
to managing complex uncertainties across 
modeled interfaces using graph theory.

“Measuring the Uncertainty Impacts 
During the Systems Engineering Lifecy-
cle” by David Flanigan and Jeffery Dixon 
explore a methodology to quantify uncer-
tainty and the interdependencies of the 
uncertainty factors during development, 
including both internal and external factors 
and their contribution to the overall system 
uncertainty. An illustrative example is pro-
vided to illuminate the methodology.

“The ValXplore Method: Exploring 
Desirability, Feasibility and Viability 
of Business and System Design under 
Uncertainty” by Sonia Ben Hamida, Marija 
Jankovic, Alain Huet, and Jean-Claude 
Bocquet support decision-making in 
business and system design. ValXplore 
uses visual analysis and data analytics to 
perform rapid sensitivity and uncertainty 
analysis of a large number of design 
alternatives to explore uncertainties. They 
tested and validated the method on an 
industrial case study to assess the benefits 
and limits of the semi-reusability of a 
launch vehicle.

“Informing the Delineation of Input Un-
certainty Space in Exploratory Modelling 
using a Heuristic Approach” by Enayat A. 
Moallemi, Sondoss Elsawah, and Michael 
J. Ryan propose a heuristic approach which 
informs the delineation of input uncertain-
ties by screening the relevant model behav-
ior in the solution space. An aircraft fleet 
management system is used to demonstrate 
the implementation of the approach in 
practice. The authors conclude that the de-
lineation of input uncertainty space can be 
a way to control simulations in exploratory 
modelling and to enhance the efficiency of 
the exploration process and the confidence 
of the final results.

“Assessing the Impacts of Uncertainty 
Propagation to System Requirements by 
Evaluating Requirement Connectivity” by 
Alejandro Salado and Roshanak Nilchiani 
describe a requirement connectivity metric 
to evaluate the potential consequences that 
changing a requirement may have on a 
system with respect to fulfillment of other 
requirements. The metric is used to evalu-
ate different cases in which requirements 
are changed due to triggering of uncertain 
events during a project life cycle.

“Applying Bayesian Networks to TRL 
Assessments – Innovation in Systems 
Engineering” by Marc F. Austin, Virginia 

Ahalt, Erin Doolittle, Cheyne Homberger, 
George A. Polacek, and Donald M. York 
argues for the use of a Bayesian network 
model to provide a mathematical meth-
od to consistently combine and validate 
the judgment of subject matter experts 
(SMEs) to increase the confidence in the 
determination of the readiness of sys-
tem components and their technologies 
using technology readiness level (TRL) 
assessments to determine the maturity of 
technology readiness assessments (TRAs) 
and critical technology elements (CTEs) of 
a system as it moves forward in the system 
development life cycle.

“A Bayesian Approach for Estimating 
Complex System Reliability” by Ozge 
Doguc and Jose Emmanuel Ramirez-
Marquez describes a holistic method 
using historical data about a system to be 
modeled as a Bayesian network (BN) that 
provides efficient techniques for automated 
construction of the BN model and 
estimation of the system reliability. Limited 
human intervention is sufficient for the 
process of BN construction and reliability 
estimation. This is in contrast to the time-
consuming practice of having a group of 
specialists who are BN and domain experts 
build a system-specific BN that may lead to 
incorrect deductions for the specific system.

We hope you find INSIGHT, the prac-
titioners’ magazine for systems engineers, 
informative and relevant. Feedback from 
readers is critical to INSIGHT’s quali-
ty. We encourage letters to the editor at 
insight@incose.net. Please include “letter to 
the editor” in the subject line. INSIGHT 
also continues to solicit special features, 
standalone articles, book reviews, and 
op-eds. Please contact us at FuSE@incose.
net if you are interested in contributing 
to our body of knowledge accounting for 
uncertainty in the engineering of systems. 
For information about INSIGHT, including 
upcoming issues, see https://www.incose.
org/products-and-publications/periodicals#IN-
SIGHT. For information about sponsoring 
INSIGHT, please contact the INCOSE 
marketing and communications director at 
marcom@incose.net . 
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Systems Engineering: The Journal of The International Council on Systems Engineering

Call for Papers
he Systems Engineering journal is intend ed to be a primary 
source of multidisciplinary information for the systems engineer-
ing and management of products and services, and processes of 
all types. Systems engi neering activities involve the technologies 

and system management approaches needed for
• definition of systems, including identi fication of user 

requirements and technological specifications;
• development of systems, including concep tual architectures, 

tradeoff of design concepts, configuration management during 
system development, integration of new systems with legacy 
systems, inte grated product and process development; and

• deployment of systems, including opera tional test and 
evaluation, maintenance over an extended life-cycle, and 
re-engineering.

Systems Engineering is the archival journal of, and exists to serve the 
following objectives of, the International Council on Systems Engineer-
ing (INCOSE):

• To provide a focal point for dissemination of systems 
engineering knowledge

• To promote collaboration in systems engineering education 
and research

• To encourage and assure establishment of professional 
standards for integrity in the practice of systems engineering

• To improve the professional status of all those engaged in the 
practice of systems engineering

• To encourage governmental and industrial support for research 
and educational programs that will improve the systems 
engineering process and its practice

The journal supports these goals by provi ding a continuing, respected 
publication of peer-reviewed results from research and development in 
the area of systems engineering. Systems engineering is defined broadly 
in this context as an interdisciplinary approach and means to enable the 
realization of succes s ful systems that are of high quality, cost-effective, 
and trust worthy in meeting customer requirements.

The Systems Engineering journal is dedi cated to all aspects of the 
engineering of systems: technical, management, economic, and social. 
It focuses on the life-cycle processes needed to create trustworthy and 
high-quality systems. It will also emphasize the systems management 
efforts needed to define, develop, and deploy trustworthy and high 
quality processes for the production of systems. Within this, Systems 
Engineer ing is especially con cerned with evaluation of the efficiency and 
effectiveness of systems management, technical direction, and integra-
tion of systems. Systems Engi neering is also very concerned with the 
engineering of systems that support sustainable development. Modern 
systems, including both products and services, are often very knowl-
edge-intensive, and are found in both the public and private sectors. 
The journal emphasizes strate gic and program management of these, 
and the infor mation and knowledge base for knowledge princi ples, 
knowledge practices, and knowledge perspectives for the engineering of 

systems. Definitive case studies involving systems engineering practice 
are especially welcome.

The journal is a primary source of infor mation for the systems engineer-
ing of products and services that are generally large in scale, scope, 
and complexity. Systems Engineering will be especially concerned with 
process- or product-line–related efforts needed to produce products that 
are trustworthy and of high quality, and that are cost effective in meeting 
user needs. A major component of this is system cost and operational 
effectiveness determination, and the development of processes that 
ensure that products are cost effective. This requires the integration of a 
number of engi neering disciplines necessary for the definition, devel-
opment, and deployment of complex systems. It also requires attention 
to the life cycle process used to produce systems, and the integration 
of systems, including legacy systems, at various architectural levels. 
In addition, appropriate systems management of information and 
knowledge across technologies, organi zations, and environments is also 
needed to insure a sustainable world.

The journal will accept and review sub missions in English from any 
author, in any global locality, whether or not the author is an INCOSE 
member. A body of international peers will review all submissions, and 
the reviewers will suggest potential revisions to the author, with the intent 
to achieve published papers that

• relate to the field of systems engineering;
• represent new, previously unpublished work;
• advance the state of knowledge of the field; and
• conform to a high standard of scholarly presentation.

Editorial selection of works for publication will be made based on con-
tent, without regard to the stature of the authors. Selections will include 
a wide variety of international works, recognizing and supporting the 
essential breadth and universality of the field. Final selection of papers 
for publication, and the form of publication, shall rest with the editor.

Submission of quality papers for review is strongly encouraged. The 
review process is estimated to take three months, occasionally longer for 
hard-copy manuscript.

Systems Engineering operates an online submission and peer review 
system that allows authors to submit articles online and track their 
progress, throughout the peer-review process, via a web interface. 
All papers submitted to Systems Engineering, including revisions or 
resubmissions of prior manuscripts, must be made through the online 
system. Contributions sent through regular mail on paper or emails with 
attachments will not be reviewed or acknowledged.

All manuscripts must be submitted online to Systems Engineering at 
ScholarOne Manuscripts, located at:  
  https://mc.manuscriptcentral.com/SYS 
Full instructions and support are available on the site, and a user ID and 
password can be obtained on the first visit.

T

https://mc.manuscriptcentral.com/SYS
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INSIGHT Special Feature

INTRODUCTION

 ABSTRACT
Prevailing modeling and simulation (M&S) techniques have struggled to provide meaningful quantitative results in M&S of com-
plex system of systems (SoSs) in the face of an environment filled with complex interacting uncertainties. This paper reports on 
systems thinking applied to “how” M&S techniques should shift to allow a next generation of quantitative tools and techniques. 
The imperative is to provide quantitative performance results across the constituent interfaces in a modeled architecture. A five-
step statistical and parametric algorithm tool that addresses uncertainty quantification (UQ) is presented. [Improving the utility 
of UQ data evaluation] A quantitative approach to managing complex uncertainties across modeled interfaces using graph theory 
is proposed. A future vision for SoS engineering (SoSE) that uses graph theory-based modeling is suggested to improve the utility 
of tools such as UQ is suggested.

Uncertainty Quantification 
(UQ) in Complex System of 
Systems (SoS) Modeling 
and Simulation (M&S) 
Environments
Joseph Marvin, Thomas Whalen, Brad Morantz, Ray Deiotte, and Robert K. Garrett, Jr.
Copyright © 2013 by Joseph Marvin, Thomas Whalen, Brad Morantz, Ray Deiotte, and Robert K. Garrett, Jr. Published and used by 
INCOSE with permission.

As systems have become more 
complex, the modeling and sim-
ulation (M&S) of these systems 
and SoS becomes equally, if not 

more, complex. The usual M&S challenges 
of performance, fidelity and approxi-
mations are joined with new challenges 
such as emergent behavior influenced 
by aleatoric and epistemic uncertainty. 
Understanding this uncertainty in models 
inherently requires an analysis of the data 
across the entire model or subcomponents 
of the model. In many cases, complex SoS 
models are created from individual system 
component models. In this situation, aggre-
gated SoS models can introduce inconsis-
tencies in data across component system 
model interfaces. The authors suggest these 
data inconsistencies in SoS models can 

be minimized by the use of graph theory. 
Once these data inconsistencies are reduced 
or eliminated through graph theory based 
modeling, the utility and effectiveness of 
UQ tools is enhanced. We believe UQ in 
complex SoS M&S environments is best 
served through graph theory modeling. 
This enables better treatment of the data 
across M&S interfaces and improves the 
utility of UQ tools and algorithms.

The domain of SoS, and systems of 
systems engineering (SoSE) have received 
much attention especially from the United 
States Department of Defense (DoD). Ini-
tial attention was placed on defining what is 
a SoS, that is when is a collection of systems 
a SoS. Subsequent efforts focused on de-
fining what SoSE is and the establishment 
of SoSE communities of practice (CoP). 

Much of this SoS work initially focused 
on the notion of extending classic systems 
engineering processes that have been 
successfully used for engineering complex 
systems to the SoSE domain. Through 
review of the literature and our experiences 
as engineering practitioners, the authors 
contend that specific and quantitative tools, 
techniques, and procedures, to define “how 
to” implement SoSE is missing.

 The decision-maker desperately needs 
quantitative information from the SoSE 
about SoS mission goals vs. mission capa-
bility at the enterprise architecture level 
throughout the lifecycle. Our research and 
systems thinking leads us to believe that 
graph theory-based approaches facilitate 
answer this need for quantitative SoSE. 
Garrett and Deiotte (2013) introduced a 
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new methodology for capturing the essence 
of the physical SoS, the functions executed 
within the SoS, the interactions between 
components (at both the functional and 
behavioral levels) and the causal nature of 
the SoS based on an employment strategy. 
Leveraging graph theoretics, a mission level 
system of systems engineering (MLSoSE) 
approach provides an abstract, quantifiable 
method to assess the nature and quality of a 
SoS model, addressing sensitivity, uncer-
tainty, and quality of the composition.

The foundations of graph theory spans 
multiple centuries back to Leonhard Euler’s 
paper published in 1736 entitled Seven 
Bridges of Konigsberg (Euler 1741). This 
paper related a problem of a traveling 
salesman who could only cross each bridge 
in the city of Konigsberg one time while 
minimizing his total travelled distance. Eul-
er’s formula relating properties of the graph 
(nodes, edges, and faces) is said to be the 
origin of topology. Graphs are prolific and 
can be seen in all facets of science, math, 
nature, and society. Their application to the 
SoS problem is bourgeoning as can be seen 
in the multiple graph representations of 
SysML, DoDAF, and UML, to name a few. 
Authors like Garret and Anderson, et al. 
(2011); Marchette (2010); and Luna, Lopes, 
Tao, Zapata, and Pineda (2013) have all ap-
plied the basic concepts of graph theory to 
multiple aspects of the SoS problem space.

From architecture and design to analysis 
and verification and validation, graphs 
can be shown to be at the heart of the SoS 
paradigm.

The advantages of utilizing graphs 
for the representation, exploration, and 
exploitation of SoSs are innumerable. 
Because of the flexible nature of graphs and 
their multiple incarnations (undirected, 
directed, acyclical, cyclical, etc.) graphs can 
be utilized to represent static and dynamic 
characteristics of the SoS while utilizing 
a standard mathematical formulation for 
quantitative analysis of the structure. By 
associating metadata to edges and nodes in 
the graph and transforming from one graph 
type to another allows engineers, architects, 
and analysts alike to explore models of SoSs 
freely extracting pertinent information 
regarding behavior, performance, uncer-
tainty, and risks.

Additionally, there has been a large move 
in the past decade to utilize graphs as large, 
complex data stores to overcome some of 
the natural issues with traditional rela-
tional databases. This includes being able 
to associate multiple forms of information 
with multiple types of relationships thereby 
allowing the extraction of information from 
data in a manner that is intuitive and frank. 
Leveraging a graph-based paradigm for SoS 
modeling and data bases allows interopera-

bility far beyond the current state of the art.
 The authors have had a unique oppor-

tunity to collaborate on this paradigm shift 
needed to enable and empower the SoSE to 
deliver a new level of M&S to address SoSs.  
We have discussed this issue with system 
thinkers at the INCOSE 2013 International 
Symposium in a research session of the Sys-
tems of Systems Working group (SoSWG).  
We have reached out across domains, au-
thors, and expert practitioners.  As a result, 
we are convinced this shift has the potential 
for a transformation in SoSE by getting to 
“how.”  Efforts are underway to complete 
a graph-theory modeling approach which 
incorporates graph databases and multiple 
open-source tools.  Uncertainty and uncer-
tainty quantification plays a central role in 
a new horizon for SoSE.  The next section 
describes work accomplished on an uncer-
tainty characterization and quantification 
prototype targeted as a key component in 
near-term SoSE analyses using graph-theo-
ry based modeling techniques.   

UNCERTAINTY CHARACTERIZATION AND 
QUANTIFICATION

 Uncertainty characterization and 
quantification (UCQ) is designed to 
benefit a client with an SoS model whose 
uncertainty they wish to characterize 
and quantify to support evaluation, 
management, and/or improvement of 
the M&S or perhaps integrating it into a 
multi-model synthesis. Every SoS model is 
based on a set of exogenous assumptions 
about initial conditions, environmental 
factors, etc. Uncertainty in the output 
of the SoS model is a consequence of 
uncertainty in the values of one or more of 
these exogenous assumptions. Following 
(Mathematical Science Foundations of 
Validation, Verification, and Uncertainty 
Quantification 2012) we refer to these 
uncertain exogenous assumptions as 
“parameters.” The prototype implementation 
includes a “toy problem” to take the place 
of a client’s M&S. While much simpler than 
any real M&S system, the “toy problem” 
includes nonlinearity and discontinuity to 
ensure that UCQ for characterization and 
quantification of uncertainty will be effective 
in an environment where both the real world 
SOS and the M&S systems modeling it have 
strong digital switching elements rather 
than being purely analog systems that can be 
modeled by differential equations.

 Uncertainty is fundamentally the 
potential to generate surprises, especially 
unpleasant surprises. At this stage in its 
development, UCQ focuses on one single 
number output from the SoS model for 
each unique set of parameter values the 
SoS model is given. We refer to this value 
as the quantity of interest, or QoI (Mathe-

matical Science Foundations of Validation, 
Verification, and Uncertainty Quantification 
2012). A commonly used QoI to assess the 
performance of a simulated missile defense 
system is margin (Mathematical Science 
Foundations of Validation, Verification, 
and Uncertainty Quantification 2012). An 
interceptor missile is assumed to have a 
kill radius such that, if the interceptor and 
the enemy attacking missile come within 
this kill radius, the attacking missile is 
destroyed with a positive margin equal to 
the kill radius, minus the distance between 
the two missiles. If, unfortunately, intercep-
tion does not occur, the margin is then the 
smallest distance achieved between the two 
missiles, minus the kill radius.

 For some of the parameters whose value 
is uncertain, the client may have evidence 
to support the belief that the real-life value 
of the parameter will come from a specified 
probability distribution. In this case we re-
fer to the parameter as aleatoric. Examples 
include the failure probability for individual 
components, the probability of a common 
mode failure, and the prior probabilities 
and likelihoods that enter into a Bayesian 
analysis. Some authors treat the latter two 
categories as epistemic despite the presence 
of a well-defined probability distribution.

On the other hand, there may be other 
parameters whose value is uncertain and 
nonrandom; all the user has available is a 
range of possibilities with no evidence to 
support one possibility in favor of another. 
Parameters subject to this kind of nonran-
dom uncertainty are referred to as epistem-
ic parameters. One clear example would 
be the action of an enemy who makes 
unpredictable choices, not at random, but 
for reasons of his own which are not fully 
known to us.

We treat the client’s SoS model as a 
black box; we do not use any classified or 
proprietary information about the internals 
of the M&S. In order to use our system, 
the client permits a link between it and his 
own SoS model, enabling UCQ to submit 
a specific value for each parameter, initiate 
a run of the simulation model, and receive 
back a value of the QoI. The client must 
also specify the range of possible values for 
each epistemic parameter and the probabil-
ity distribution function for each aleatoric 
parameter. Figure 1 provides the context 
of UCQ acting on the SoS model (M&S 
system) toy problem.

Using this information, UCQ first creates 
a representative random sample using the 
Latin Hypercube sampling method (McKay 
and Conwer 1979). Using a geometric 
analogy, we refer to the vector specifying a 
unique value for each uncertain parameter 
as a point in a multidimensional parameter 
space.
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  In order to treat aleatoric and epistemic 
parameters consistently without discard-
ing legitimate probability information 
about aleatoric parameters, or introducing 
spurious probability assumptions about 
epistemic parameters, we apply a gener-
alized probit transformation (Bliss 1934; 
Cleophas and Zwinderman 2012) to replace 
each possible value that a given aleatoric 
parameter might take on with its cumu-
lative probability in the unit interval. We 
also use a simple linear transformation to 
map the range of possible values for each 
epistemic parameter into the unit interval. 
This maps the higher dimensional space, 
defined by parameters expressed in natural 
units, to a unit hypercube. For reasons that 
will become apparent shortly, we refer to 
this unit hypercube as “batspace.”

For each point in the parameter space 
selected by the random sampling process, 
UCQ queries the client’s SoS model, which 
takes those specific parameter values, runs 
the simulation from start to finish, and 
returns the value of QoI. UCQ uses this 
representative random sample to output 
a standard statistical report of mean, 
standard deviation, skewness, kurtosis, and 
other statistics giving information about the 
global behavior of the QoI, as parameter 
values vary according to the aleatoric or 
epistemic information available.

Following the conventional statistical 
analysis, we institute an exploited search 
procedure in which biologically inspired 
agents (Brownlee 2012) (“bats”) seek out 

areas of noteworthy performance (ANPs) 
(Schultz et al. 1992. ANPs come in three 
varieties. An upside ANP is an area in pa-
rameter space characterized by exception-
ally high values of QoI; a downside ANP is 
characterized by exceptionally low values; 
and an unstable ANP is characterized by 
rapidly changing QoI values associated 
with small changes in the values of the 
parameters.

An ANP is a hazard if it indicates the 
mere possibility of failure; it is a risk if fail-
ure has a significant degree of plausibility 
or probability (NRC 2009).

The database formed by aggregating 
all of the upside, downside, and unstable 
ANPs forms the basis for a global charac-
terization and quantification of uncertainty. 
Dempster’s (1967) upper probability is a 
mathematical tool well suited for combin-
ing aleatoric and epistemic uncertainty 
without loss of information or introduction 
of spurious assumptions. Our approach 
normalizes the result of this calculation 
to create the membership function of an 
evidence-based fuzzy set of plausible values 
of QoI. The plausibility of failure is the 
highest membership of any negative value 
of QoI in the fuzzy set of plausible values. 
The probability of failure is always less than 
or equal to the plausibility of failure; prob-
ability cannot be precisely quantified in the 
presence of epistemic uncertainty. The total 
uncertainty of the SoS model is quantified 
by the area under the membership func-
tion, the “sigma count.” The global charac-

terization and quantification of uncertainty, 
summarized by the two key scalar metrics 
quantity of uncertainty and plausibility of 
failure, is useful for comparative assessment 
of one SoS model against competing SoS 
models of the same real world scenario. 

We created a toy problem representation 
of an SoS model. The toy problem is a sim-
ple missile defense scenario that mimics the 
effects of aleatoric and epistemic parame-
ters. These effects include a “kill radius” and 
a hypothetical “Hawaii” effect. These terms 
appear throughout the following explana-
tion of the five major steps in our technical 
feasibility demonstration.

Step One: Consistent Treatment of Ale-
atoric and Epistemic Parameters. In order 
to treat aleatoric and epistemic parameters 
defined on a variety of scales of measure-
ment in a consistent manner without losing 
valuable probabilistic information about 
the aleatoric parameters, and also without 
introducing spurious probabilistic assump-
tions about the epistemic parameters (Aven 
2010), we transform the parameter vectors 
defined in natural units in parameter space 
into a multidimensional unit hypercube, 
referred to as batspace.

Biologically inspired exploited search 
agents, “bats,” operate in batspace to find 
ANPs which, when translated back to natu-
ral units in parameter space and submitted 
to the client’s SoS model, generate areas of 
performance noteworthy for exceptionally 
high, exceptionally low, or exceptionally 
unstable performance.

The mapping process for an epistemic 
parameter is very simple. A given specific 
value of such a parameter in natural units is 
transformed into a value in the unit interval 
by subtracting the lower bound of the pa-
rameter’s range and dividing by the width 
of that range. The reverse transformation 
is simply the mathematical inverse of that 
process.

The transformation of an aleatoric 
variable from parameter space to batspace 
is more complex. It uses a probit trans-
formation (Bliss 1934) to hold in abey-
ance the probabilistic information about 
the aleatoric variable in such a way that 
it can be ignored by the bats operating 
in batspace but restored when batspace 
values are transformed back into natural 
units in parameter space. In UCQ we 
transform a value in parameter space by 
using the probit transformation giving its 
cumulative probability, and we transform 
a corresponding point in batspace using 
the inverse probit transformation to find 
the value in natural units whose cumula-
tive probability is that given value in the 
unit interval. Since the literature on probit 
transformation is generally focused on 
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Gaussian distributions, we use the phrase 
“generalized probit transformation.”

These transformations can be visualized 
using an ordinary cumulative probability 
graph. Suppose that one of the parameters 
of an M&S is an amount of money that 
is normally distributed with a mean of 
$11 and a standard deviation of $3. If we 
needed to find the location in the unit in-
terval in batspace corresponding to a dollar 
amount of $10, we can see it in Figure 2 by 
looking vertically upward from $10 on the 
parameter space axis and reading the value 
of the corresponding element of batspace 
as 0.37. Contrariwise, if we had a value of 
0.37 in batspace and needed to find the 
corresponding value in natural units in 
parameter space, we would look horizon-
tally from 0.37 on the vertical batspace axis 
and read the corresponding value of $10 in 
parameter space.

Since the toy problem that we used 
to demonstrate the performance of the 
prototype system for characterization and 
quantification of M&S uncertainty has six 
uncertain parameters, the parameter space 
and corresponding batspace in the present 
prototype each have six dimensions, with 
a seventh dimension representing the QoI. 
Increase in the number of dimensions is 
straightforward and adds only linearly to 
the amount of computation required. 

Step Two: Standard Statistical Char-
acterization and Quantification of 
Uncertainty. In this step we treat each 
transformed parameter in batspace as a 
uniformly distributed random variable. 
This is standard practice in Monte Carlo 
simulation for aleatoric uncertainties. If 
the transformed value in the unit interval 
is given a uniform distribution, the inverse 
transformation will give the correct prob-
ability distribution in natural units in pa-
rameter space. For epistemic uncertainties, 
the principle of insufficient information 
(Aven 2010) is frequently used to justify the 
imposition of a uniform distribution. These 
distributional assumptions in batspace are 
only temporary for this stage of the analysis 
and will be discarded in the following stage; 
however, they are standard practice and 
the statistical results of this assumption are 
provided to the client as a familiar set of 
tools for assessing SoS models.

The Latin Hypercube sampling approach 
(McKay et al. 1979) is a widely used method 
to generate a representative random sample 
of inputs to be used in assessing a computer 
simulation system. We use this method 
to perform a stratified random sample on 
the assumption of a multivariate uniform 
distribution discussed above.

Step Three: Search for Areas of Note-
worthy Performance. The next step is to 
assign each sample point in the representa-
tive sample described above to a biological-
ly inspired parallel exploited search agent. 
These search agents are loosely modeled as 
bats that use active sonar at short range to 
detect tiny mosquitoes by emitting chirps at 
varying frequencies depending on the local 
concentration of prey. This variation allows 
the bats to also use passive sonar (Bohn 
1838) at longer ranges to see which other 
bats in their family are achieving better 
hunting success and fly towards those more 
fortunate family members on the basis of 
two instincts. One instinct is to approach 
more successful family members, and the 
other is to fly toward family members who 
are nearby. Each bat’s decision-making 
is done in parallel, independently of the 
decision-making process of any other bat 
relying only on fellow family members’ 
location and success.

Since there are three classes of ANPs: 
upside, downside, and sensitivity, there 
are effectively three different species of 
bat. The concentration of the prey sought 
by upside bats at any point in batspace is 
directly proportional to the value of QoI 
in the corresponding point in parameter 
space. Downside bats hunt for a prey whose 
concentration in batspace is negatively pro-
portional to the value of QoI in parameter 
space. The behavior of our sensitivity bats 
is least comparable to that of any real bat. 
These bats are motivated to fly towards 
nearby family members whose success rate 
is maximally different from theirs, whether 
greater or lesser.

When the bats have arrived at their next 
location, their position in batspace is trans-
formed back to natural units as discussed 
above. This vector of parameter values is 
transmitted to the client’s SoS model which 
performs a simulation run and returns the 
QoI. Once every bat has received the QoI 
value corresponding to its new location, 
they determine which family member to fly 
towards and move to a third location and 
the cycle continues. The current implemen-
tation of the working prototype converges 
within 10 or fewer iterations, except in the 
more complicated search for sensitivity 
ANPs. The prototype has 30 bats divided 
into five families of six bats each; since all 
three species use this structure there are 
effectively 15 families, 90 bats in all. It is 

a straightforward matter to increase the 
number of bats, with only a linear increase 
in the total amount of complexity required. 
The result of the collection of points visited 
by the bats during the search is a sample 
which is divided into separate ANPs, one 
for each family for each of the three types 
of ANPs sought. The entire sample is used 
in step four, while the data from each of the 
15 families is used separately in Step Five.

Step Four: Global Characterization 
and Quantification of Uncertainty. The 
ideal real-world system would be one that 
delivered excellent performance regardless 
of what the values of the possibilistic and 
probabilistic parameters happened to be. 
An uncertain system is one that works well 
in some circumstances and poorly in oth-
ers. Uncertainty in a purely probabilistic or 
aleatory system is defined by the variance, 
probability of failure, and other statistical 
dispersion measures of the QoI across 
the probabilistic variations of the proba-
bilistic inputs. Contrariwise, when all the 
dimensions are possibilistic, simple interval 
analysis (Moore et al. 1996) suffices. For 
the general situation of UQ for simulation 
models of highly complex real-world sys-
tems, neither of these standard approaches 
is entirely satisfactory, as discussed above. 
Consider an extremely simple system with 
just one probabilistic variable x1 which is 
normally distributed with mean 100 and 
standard deviation 10, and one possibilistic 
variable x2 ranging from -5 to +5 with no 
evidence to support any particular proba-
bility distribution. The response surface for 
this extremely simplified example is F(X) = 
x1 + x2.

In Figure 3, Graph A, the solid diamonds 
represent the probability density function 
of F(X) when x2 is equal to 0. The triangles 
represent the probability density func-
tion of F(X) when x2 is equal to -5. Note 
that pessimistic values of F(X) are more 
probable when x2 is negative and optimistic 
values of F(X) are more probable when x2 
is positive.

The solid black curve is the maximum 
probability density of F(X) over all values of 
x2 for a given value of x1. It was called the 
upper probability by Dempster.

In 1967 Dempster proved that the prob-
ability of a partially specified event must 
be less than or equal to the upper proba-
bility in a mathematically defined class of 
situations that includes mixed models with 
possibilistic and probabilistic variables.

The upper probability curve can be 
approximated from the collection of values 
generated by the bats. Conceptually, we can 
graph each observed value of F(X) against 
the upper probability of the most plausible 
point in input space observed to generate 
that value of F(X), then connect the dots 

Figure 2. Cumulative probability graph
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to draw the convex hull and a smoothed 
version of it.

The area under an upper probability 
curve of the extremely simple function 
F(X) = x1+x2 is proportional to the range 
of the possibilistic variable but is insensitive 
to the variance of the probabilistic variable; 
similar difficulties apply to more realistic 
cases. Calculating a normalized plausibility 
by dividing each upper probability by the 
maximum plausibility can be used to define 
a fuzzy set of plausible values. The area un-
der this curve, known as the sigma count, is 
positively related both to the variability of 
probabilistic variables and the range of pos-
sibilistic variables. This area constitutes our 
measure to quantify the global uncertainty 
of a simulation model for assessing highly 
complex real-world systems. The global 
uncertainty of the UQ system’s analysis of 
a given simulation model is represented by 
the sigma count of the plausibility member-
ship function, which is just the area under 
the curve. Since it is the integral of a curve 
found by dividing one probability density 
by another, it is dimensionless but serves to 

compare the total uncertainty of one model 
with another and, by extension, the total 
uncertainty of the two real-world systems 
being so modeled.

In a totally certain system, the graph 
would be a vertical line at the certain QoI 
value. In a totally uncertain system, the 
graph would be a horizontal line from 
– infinity to + infinity and uncertainty 
would be infinite.

The plausibility of failure is the plausi-
bility of the most plausible negative QoI; 
graphically it is the maximum height of the 
red area.

Figure 3, Graph B, shows the fuzzy set 
corresponding to the example discussed 
above, while Figure 2, Graph C, shows the 
fuzzy set arising from the same example, 
except with a standard deviation of only 4 
for x1.

Figure 4 shows the global quantification 
of uncertainty for the M&S with the Hawaii 
effect included. The gray area represents 
values of QoI which are not observed, but 
which contribute to the total uncertainty 
because of the penalty value of -100. The 

total quantity of uncertainty for this M&S 
is 184.94 and the plausibility of failure is 
96.14%.

Step Five: Local Characterization and 
Quantification of Uncertainty. Global 
characterization and quantification of un-
certainty is useful for comparing the overall 
effectiveness of competing variations of the 
real world SoS (Volkert et al. 2013). How-
ever, more is needed in order to achieve the 
full potential of characterizing and quanti-
fying the uncertainty in an SoS model. Step 
5 introduces additional statistical analysis 
steps that help to graphically characterize 
and quantify uncertainty. Understanding 
what goes on at each individual ANP is 
necessary to inform the process of iden-
tifying errors and inadequacies in the 
simulation system in order to improve the 
simulation and/or to recognize opportu-
nities to design a synergistic multi-model 
M&S that exploits the specific strengths 
and overcomes the specific weaknesses of 
complementary individual SoS models. 
Moreover, it is through information about 
the various ANPs of an SoS model that the 
client is equipped to discover the strengths 
and weaknesses of the real world SoS. The 
following sections describe mathematical, 
statistical, and graphical characterization 
and quantification of local uncertainty in 
the particular area whose performance is 
noteworthy for high, low, or rapidly chang-
ing values of QoI.

Mathematical Characterization and 
Quantification of Local Uncertainty. The 
local mathematical information begins with 
a table showing the location in param-
eter space of the mean values of all the 
parameters and of QoI for all bat families 
of a particular type: upside, downside, or 
sensitivity. Following this there is a series of 
reports for each individual ANPs.

The first element of this series of 
reports is a table giving the mean, median, 
maximum, and minimum values of each 
parameter in the ANP in question, together 
with the mean, median, maximum, and 
minimum values of the QoI in the ANP. 
We will use the results from Bat Family 1 in 
the above sensitivity search as our example 
shown in Table 1.

Statistical Characterization and 
Quantification of Local Uncertainty. The 
statistical portion of the information 
provided for each individual ANP begins 
with a stepwise quadratic regression 
equation fitted to the points visited by one 
particular bat family, with the exclusion of 
the first two sets of points. The resulting 
quadratic form potentially including all 
of the parameters is a meta-model of the 
behavior of the SoS model focused on just 
the neighborhood of the ANPs inhabited by 
that particular bat family.

Graph A: Derivation of Plausibility Graph B: Set of Plausible
Values, s.d. = 10

Graph C: Set of Plausible
Values, s.d. = 4 

Figure 3. Plausibility
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Table 1. Bat Family 1 sensitivity search

 x1 x2 x3 x4 x5 x6 QoI 

mean 80 23 103 56 46 103 -22 

median 81 16 100 59 52 100 14 

maximum 100 100 141 100 88 141 125 

minimum 14 0 94 0 0 98 -100 
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A variety of statistical analysis tools 
can be applied to the data collected for 
each ANP. In our current approach a local 
quadratic regression for each combination 
of three parameters vs. QoI and reports 
which combinations give the best statistical 
predictive power. 

Graphical Uncertainty Characteriza-
tion and Quantification of Local Un-
certainty. The three parameters with the 
highest collective predictive power in a 
local quadratic approximation for this ANP 
are x1, enemy aim point 1; x3, kill radius 1; 
and x4, attacker aim point 2. The graphical 
characterization and quantification of an 
ANP begins with an array of nine graphs. 
Each of the three parameters in the most 
predictive set of three has one row and one 
column in the table. The median value of 
the predictor in question within the given 
ANP is indicated by a red dot on the qua-
dratic regression line.

Figure 5 gives the graphical character-
ization and quantification of uncertainty 
for the example ANP discussed above. Red 
regions in the three-dimensional space 
portrayed in these graphs indicate that the 
QoI is negative, meaning that the M&S 
has predicted failure of the real world SoS 
under simulation. Green regions indicate 
positive values of QoI.

The first graph approximates the QoI 
as a local univariate quadratic function of 
x1, enemy aim point 1. Since the median 
value x1 is already above the correspond-
ing defending aim point x2 in the cluster 
found by Bat Family 1, increases within 
the boundaries of the neighborhood of this 
ANP consistently lead to more favorable 
values of QoI and vice versa.

The three-dimensional graph in the 
center, showing the local quadratic approx-
imation of QoI as a function of x1 and x3 
contains an important interaction effect. 
Within the local area of this ANP, perfor-
mance is negative only when X1 and X3 
are both low. This can be seen in the lower 
front right corner of the 3D graph. If X1 is 
high, that means in the context of this local 
ANP that it is close to X2; the two missiles 
are close together, so that a value of X3, the 
kill radius, within the local area of this ANP 
can still lead to positive QoI. Similarly, if 
X3 is high, the kill radius is wide enough 
that x1 can be in the low end of its range 
within this local area, relatively far away 
from the intercepting missile assigned to it, 
and still be destroyed, resulting in a positive 
value of QoI.

The third three-dimensional graph shows 
the interaction between the first enemy aim 
point x1 and the second enemy aim point 
x4 in the area inhabited by Bat Family 1. 
The red color is seen for high values of x1; 
for x4, the graph is green for values close to 
50 and red for values either much higher or 
much lower than 50.

The second component of local graphi-
cal characterization and quantification of 
uncertainty consists of a graph comparable 
to the one for global characterization and 
quantification of uncertainty, with QoI on 
the horizontal axis and plausibility on the 
vertical axis. The amount of uncertainty 
indicated by the gray area is much larger 
than the area of uncertainty in the global 
characterization and quantification of un-
certainty for the toy problem that includes 
the Hawaii effect. The same possibility of a 
penalty of -100 with one hundred percent 

plausibility exists in both cases, but in this 
local ANP, which was found by bats spe-
cifically seeking maximum sensitivity, the 
green area is smaller and concentrated on 
the most favorable end. The above example 
is shown in Figure 6.

SUMMARY
Uncertainty Characterization and 

Quantification. The goals of this project 
are to demonstrate feasibility of a system 
that will characterize and quantify the 
output uncertainty produced by an M&S 
arising from a combination of aleatoric 
and epistemic input uncertainties. UCQ 
system performs this characterization and 
quantification both globally and locally in 
terms of specific ANPs. Additionally, UCQ 
is designed to be able to be scaled up to 
high dimensionality in order to accommo-
date large models in a timely basis without 
requiring a supercomputer. Having such a 
tool will make it possible to evaluate and 
compare M&S SoS, for both evaluation and 
improvement as well as possible synthesis 
into a multi-model approach. Graph data 
bases as implemented by graph theory 
facilitate UCQ analysis of the data. Our 
toy problem developed in Microsoft Excel 
follows this concept by passing the actual 
data from one component to the next.

Our vision for UCQ is to build a web 
service open architecture prototype that 
facilitates coupling and interfacing with any 
number of modeling and simulation tools. 
A first integration in the next 24 months 
will be with a graph theory-based architec-
ture modeling tool. Our open architecture 
approach allows a service and application 
layer UCQ capability current complex 
M&S environment, even those not built on 
service oriented constructs. The substantial 
shift to graph theory-based M&S in the 
COP will require an ability to demonstrate 
the value of graph theory results compared 
to legacy SoS models. UCQ will serve as an 
initial independent variable.

Graph Theory SoS M&S. Complex 
SoS M&S is a fertile, undefined playing 
field. To the authors there is a critical need 
for multiple layers of both modeling and 
simulation that span the conceptual to the 
continuous. Due to the nature of the SoS 

Qu
an

tit
y o

f I
nt

er
es

t
x1

60

60

10

–40

–90

–140

110

70 80 90 100

x1 versus x3

x1 varies from 60 to 100 in the graph

x1 versus x4

Figure 5. Graphical characterization and quantification of example ANP

Quantity of Interest

Jo
in

t A
lea

to
ric

 D
en

sit
y

–100 –75 –50 –25 25 50 75 100 1250–125

100%

75%

50%

25%

0%

Figure 6. Plausible instability from sensitivity ANP 1



SP
ECIA

L 
FEA

TU
R

E
D

ECEM
B

ER
  2O

24
VOLUM

E 27/ ISSUE 6

15

Training SW

Training Spt

MDA  STTR  Ph MDA  STTR  PhII MDA  STTR  PhIII

NIH DQ
DiagnosticsDoD SBIR

ISIM

UQ Math
Theory

Revenues: Licenses, Training, SoS Support

Personnel: Sos Engrs, SW Engrs, Marketing

Subject Matter Experts: DoD, Medical, Finance,…

SoSE M&S
Transformation

UQ Prototype

Time

UQ System App

UQ SoS | AF]

M1: MDA

2014

Market

UCQ Commercialization Roadmap

Product

Resources

R&D
Programs

Technology

2015 2016 2017

M2: NGA

M4: Medical,
FinancialM3: Air Force, …

UQ SoS | Fin]

UQ SoS | Med]SoS Graph
Theory

SoSE M&S
Roadmap HASP

AF,  IBM  R&D

UQ Comml
Apps

Figure 7. UCQ commercialization roadmap

(their sizes and complexities) a layered 
approach is necessary to be able to capture 
both the global and local characteristics 
of the SoS. System graphs and subgraphs 
using graph theory provide this approach. 
Our vision is one of tiered, integrated M&S 
tools that have the ability to perform UCQ 
analysis at global and local levels which can 
feed into design-level M&S and testing and 
ultimately to verification, validation and 
assessment of the SoI within one seamless 
process. The ability to leverage common 
data structures and mathematics will de-
termine the community’s ability to achieve 

this goal. We propose the migration of all 
tools, techniques and procedures to a graph 
basis to allow this transformation and to 
fully reap the benefits of SoS models.

Future of SoSE and Roadmap. A 
confederation of small business innovative 
research contractors led by government 
change agents has taken on the challenge 
to demonstrate the value of the approach 
described in this paper. We view INCOSE 
as a key supporter of the systems think-
ing necessary to shift M&S practices that 
achieve benefits described in this paper. 
Our reach is expanding rapidly, and we 

find interest in many adjacent domains 
and enterprises. We are on a roadmap 
that builds a COP and conducts a series 
of technical interchange meetings (TIMs) 
with invited stakeholders. The goal of these 
TIMs will be to advance ideas, applications, 
and demonstrate results of “how” SoSE will 
conquer complex SoS M&S through UCQ. 
The commercialization roadmap we are 
currently following is provided as Figure 7.

The authors expect to continue working 
this roadmap in a variety of forums includ-
ing scientific technology transfer (STTR) 
projects and the INCOSE SoS WG. 
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INTRODUCTION

 ABSTRACT
Uncertainty is a large part of the systems engineering development process. Particularly absent is the quantification of uncertainty 
of the threat, operating environment, and friendly force factors at each step of this lifecycle. This paper will explore a methodology 
to quantify the amount of uncertainty and the interdependencies of the uncertainty factors during the development. Included for 
consideration are internal and external factors and their contribution to the overall system uncertainty. An illustrative example is 
provided to exercise this methodology.

Measuring the 
Uncertainty Impacts 
During the Systems 
Engineering Lifecycle

David Flanigan and Jeffery Dixon
Copyright © 2015 by David Flanigan and Jeffery Dixon. Published and used by INCOSE with permission.

We are motivated to quantify 
the uncertainty inherent 
with the numerous inputs 
that affect a system devel-

opment cycle. These inputs may be in the 
form of uncertainty in the threat capabil-
ity, the operating environment that the 
system was designed for, or the system itself 
through technical performance, tactical im-
plementation, and program acquisition. If 
uncertainty was not considered, professions 
such as requirements analysts, concept 
developers, and testers are in danger of 
starting development of a system that is 
not prepared to handle the representative 
threats or operate in a representative envi-
ronment. Review of the current literature 
indicates a general lack of quantification of 
the total uncertainty and how component 
uncertainty factors are related to each oth-
er. Because of this lack of quantification, we 
propose a methodology in which to iden-
tify and quantify the uncertainty factors, 
using an illustrative example. 

LITERATURE REVIEW
The term uncertainty is reviewed in 

the literature to understand how it is 
used in systems development as well as 
understanding how uncertainty may be 
quantified. McManus and Hastings (2004) 
develop a framework to understand how 
uncertainty may be mitigated during proj-
ect development, with two significant terms 
emerging from their research. Their first 
term identifies a lack of knowledge about 
the system, where facts are not known, but 
are required to be collected. Their second 
term is the lack of system definition, where 
knowledge about the system is incomplete 
and not specified. These terms start to form 
a basis of how one may categorize the types 
of uncertainty encountered during a sys-
tems development effort. They also define 
several entry points of uncertainty during 
the program: the system may not work as 
designed; the system may work but not up 
to expectations; the market may shift; the 
need for the system may shift. Their iden-
tification of mitigation efforts includes use 
of performance margins, use of subsystem 
redundancy, use of program testing, use of 
general components, use of upgrades, and 
use of standard interfaces. We may utilize 

their research as motivation to identifying 
a particular strategy towards quantifying 
uncertainty and how it may be managed.

Flage and Aven (2009) perform research 
on the level of uncertainty intervals as 
being dependent on where one is in the 
systems development lifecycle, based on 
industry practice. Their research identifies 
+/- 40% uncertainty interval in the 
feasibility phase, +/- 30% interval in the 
concept development phase, and +/- 20% 
interval in the engineering phase. Their 
findings indicate that the uncertainty will 
gradually be reduced as the development 
progresses. During this progression, the 
level of system detail in the early phases 
is low, with an increased level of detail as 
the system reaches the engineering phase. 
We may use this to identify a means of an 
expected level of uncertainty as a function 
of the lifecycle, in which to measure our 
uncertainty methodology.

Yang et al. (2007) identify additional 
contributions of uncertainty to a program, 
specifically for software development: 
changes in requirements, a general lack of 
requirements understanding, lack of histor-
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ical data, and a lack of estimation method-
ology. In response to the uncertainty levels, 
they offer a means of agile methods in 
order to embrace change, promote frequent 
delivery, and implement a simple design 
to reduce uncertainty. Averyt et al. (2013) 
explore the concept of multiple scenarios 
set in the future, which can identify the 
available tradespace that may emerge from 
the decisions made in earlier stages. We can 
adapt this concept to explore how well the 
uncertainty can be measured and managed 
based on the early-stage systems engineer-
ing decision.

Boehm (2009) identifies several 
challenges to Department of Defense 
(DoD) software programs that will include 
handling emergent requirements, rapid 
changes to programs, and incomplete 
visibility of programs within a system of 
systems construct. He introduces a “cone 
of uncertainty” concept that reflects a 
gradually decreasing level of uncertainty 
as the system concept matures, that is 
measured at the initial development phase 
(CONOPS phase), at the specifications 
phase, and at the final delivery (Initial 
Operational Capability). In order for 
the program to remain within this cone 
of uncertainty, he requires programs 
to increase investments, implement 
competitive prototyping, and conduct 
concurrent engineering. He claims 
that failure to evolve the program may 
introduce a second cone of uncertainty 
based on uncertainties in competition, 
technology, and organization. Boehm’s 
cone provides a visual reference in which 
to reduce the uncertainty levels based on a 
particular time frame to meet a successful 
program development.

Utility functions are developed in order 
to compare dissimilar elements using a 
common or normalized scale. It is most 
often used for comparison of alternatives, 
such as a trade study. Buede (2009) refers to 
these as value curves, but they provide the 
same purpose of utility functions. Kossia-
koff and Sweet (2011) describe methods 
for using utility functions to perform trade 
off analysis. With regard to this research, 
we develop a series of utility functions to 
represent general relationships between 
different subsystems and to quantify the 
resultant output when provided an input 
from a transmitting subsystem.

From our literature search, we can 
conclude several observations. One is that 
the applications of uncertainty are varied 
within the hardware and software domains. 
There are many ways in which to measure 
the uncertainty of system progress, requiring 
a formalized means to identify and evaluate 
the causality between factors that cause an 
increase in uncertainty. So far the literature 

does not indicate a means to identify and 
measure the causality between different 
uncertainty factors, rather focusing only 
on a single primary source of uncertainty. 
Based on the literature review, we are 
motivated to introduce a methodology 
in order to measure this causality and 
the effects of differing uncertainty 
impacts on the system development. 
This measurement may provide decision 
makers with an understanding of what 
amount of uncertainty exists in a particular 
development stage and may assist 
decisions to continue or discontinue the 
program based on the expected vs. actual 
amount of uncertainty. By utilizing such a 
quantitative process, decision makers may 
also be informed of the level of risk they 
are undertaking while considering different 
alternatives or concepts while addressing 
the problem.

UNCERTAINTY CALCULATION METHODOLOGY
A five-step methodology is developed to 

quantify how various uncertainty elements 
can be measured to describe the over-
all uncertainty to the functions that are 
needed to successfully execute the system’s 
mission. The methodology is described as: 
identify the uncertainty areas, develop the 
uncertainty utility function, describe the 
uncertainty interdependency, collect the 
uncertainty inputs, and conduct the overall 
mission uncertainty analysis.

Step 1: Identify the Uncertainty Areas
This step will start to identify the differ-

ent uncertainty areas that will influence 
the mission execution of the system under 
consideration. These uncertainty areas may 
be internal, whether it is the subsystem 
/ component development, or external 
system use by the operators of the system. 
The subsystem / component development 
may have their requirements changed in 
response to another threat or environment 
that may impact the system’s development 
timeline. The subsystem may be developed 
and optimized for one particular environ-
ment, and therefore be marginalized when 
expected to perform in another environ-
ment. Funding changes may influence 
the subsystem development that was not 
foreseen, therefore delaying the capability 
further in the future than anticipated. Ad-
ditional tactics, techniques, and procedures 
(TTP) that were not envisioned in the orig-
inal design may also influence the system 
performance. Adding additional systems 
or constraints onto the original design may 
also reduce the system efficiency or may 
induce additional interface and reporting 
requirements that may reduce performance 
in the system’s operational environment.

These uncertainty areas may also be 

externally driven with unknowns about 
how the threat / target (also referred to as 
“red”) will operate, or a change in their 
technical capabilities that the system was 
originally designed to address. Other 
external uncertainties may include changes 
in the operating environment that the 
system was designed to perform within. 
Systems may be designed with an initial 
expectation of how the threat will progress 
in time to address the expected level of 
future threat performance when the system 
is to become operational. If the threat 
increases their developmental cycle greater 
than the system’s projections, then an 
inferior friendly (also referred to as “blue”) 
system will be developed. If the threat 
changes their tactical employment in an 
unanticipated direction, then the developed 
system’s performance may not be sufficient 
to address the threat. If the environment 
suddenly changes to require the system 
to operate in a different environment in 
which it was not designed for, then the 
system performance may be inferior to its 
original design. The output of this step is 
an identification of all internal and external 
factors that may contribute to the overall 
system uncertainty.

Step 2: Develop the Uncertainty Utility 
Function

This step identifies the relationship 
between the input (uncertainty, whether 
that comes from an internal or external 
source), and the resultant output on system 
/ subsystem performance. This relation-
ship draws from utility theory, in which 
the input and output scale are normalized 
between multiple dissimilar variables in 
order to have an equitable comparison. 
Utility theory is often used for trade studies 
or analysis of alternatives (AoA), in which 
multiple attributes must be comparable to 
each other, in order to provide the decision 
maker with an “apples-to-apples” com-
parison. For the purpose of this paper, the 
inputs and outputs will be scaled between 0 
and 1. Other scales may be used (e.g. 0-10, 
1-10, 1-100, etc.), but must remain consis-
tent for all factors considered.

Inputs into the utility function will rep-
resent the level of uncertainty that will be 
considered. Our scale will use the value of 0 
to represent low uncertainty, and 1 as high 
uncertainty. An example would be pro-
gram funding uncertainty, where 0 would 
represent the program being completely 
funded, and 1 would represent unclear 
knowledge of funding. The output of the 
utility function will represent the impact of 
uncertainty to the mission execution of the 
system. The value of 0 will represent a low 
performance of the mission, and the value 
of 1 will represent a high performance of 



SP
ECIA

L 
FEA

TU
R

E
D

ECEM
B

ER
  2O

24
VOLUM

E 27/ ISSUE 6

19

the mission. Continuing our example of 
program funding uncertainty, a 0 would 
represent that the effect has no perfor-
mance in the mission, where a 1 would 
represent full performance in the mission.

It is envisioned that these utility 
functions will generally move in a top to 
bottom, left to right direction to represent 
the relationship that low uncertainty will 
contribute to high performance. It may 
be generated by consulting subject matter 
experts (SMEs) to determine the shape 
of these utility functions for each subsys-
tem and the uncertainty impacts on the 
mission. The relationship may be linear, 
indicating a gradual decrease of perfor-
mance as the uncertainty increases. The 
relationship may be robust, indicating that 
the performance is not significantly impact-
ed with a slight increase in uncertainty. 
The relationship may be fragile, indicating 
that the performance is sensitive to small 
increases in uncertainty.

Figure 1 provides an example of such a 
utility function. To determine the shape of 
these curves, it may be calculated through 
SME discussion on how sensitive these 
changes are to the mission performance, 
or reliance on higher fidelity simulations 
to develop these utility functions. The 
simulations could be used in a way to 
incrementally change one uncertainty level 
and observe how the other uncertainty 
levels and mission performance are 
affected. In this example, it could be a 
sensor model interacting with a physical 
environment model and determining 
the resultant output to mission detection 
or identification. These uncertainty 
increments may also represent different 
maturity levels of the system developments 
under study. The output of this step is an 
uncertainty utility function for each unique 

combination of subsystem/component and 
uncertainty factors identified in step 1.

Step 3: Describe the Uncertainty Interde-
pendency

This step describes the interdependencies 
of the uncertainty utility functions, and 
how one utility function may influence 
another. This step seeks to identify how 
some uncertainties contribute to other 
uncertainties. Some of these dependencies 
may be one way or two way in nature. An 
example of such a dependency are multiple 
subsystems that must perform together 
in order to complete the mission. In an 
air-to-air mission, an airborne system must 
detect the threat (with sensor), identify the 
threat (with identification (ID) processor), 
conduct decision making (with battle 
management (BM) processor) engage 
the threat (with weapon), and assess the 
follow-on actions (using communication 
subsystems). These five subsystems must 
be able to perform their mission functions, 
but also in a particular order, and not every 
subsystem will interface with all other 
subsystems. Examples of this sequence 
and interaction require the sensor must 
be able to complete its detection function 
in order to then hand off the results to the 
processor. Similarly, the processor must 
complete its identification function in order 
to indicate that a weapon must be launched 
against a hostile contact. In this example, 
the processor input has a dependency on 
the sensor output, and the processor output 
will then become an input to the weapon. 
The output of this step is the identification 
of linkages, to include directionality, 
between uncertainties.

Step 4: Collect the Uncertainty Inputs 
(Scenarios)

This step collects the different uncer-
tainties that would affect the system, which 
may be categorized into scenarios or use 
cases. These scenarios may represent 
near-term, mid-term, and far-term threat 
or environment projections, and may be 
used to quantify the difference in mission 
performance based on the changes in 
uncertainties. Scenarios may be isolated 
to analyze just the threat, environment, or 
system uncertainties, or the scenarios may 
combine multiple uncertainties. The output 
of this step is the development of multiple 
scenarios that will be used for analysis.

Step 5: Conduct Overall Mission Uncer-
tainty Analysis

This step will conduct the mission 
analysis based on the scenario inputs. 
These scenarios will contain the initial 
uncertainty levels, which are then injected 
into the utility functions (shown in 
Table 2), produce an output to mission 
performance, and then are linked to other 
dependent subsystems (shown in Table 
3). The process using the interdependency 
tables and interactions are exercised to 
represent an elapsed time duration in order 
to calculate subsystem uncertainty levels. 
Mission metrics can be calculated through 
manipulation of the interdependency tables 
to determine the spread of subsystem 
uncertainty dependent on the factors (red, 
weather, and blue). Performing this analysis 
with different scenarios can show the 
relative uncertainty performance difference. 
For the purpose of this paper, each of the 
uncertainty factors are weighted equally, 
but in future work, the decision makers 
may elect to assign different weights to 
individual factors.

ILLUSTRATIVE EXAMPLE
The five-step methodology is explored 

with an illustrative example. The example 
seeks to develop an airborne platform 
capability that will attempt to detect, iden-
tify, prosecute, and engage threat airborne 
targets, such as aircraft, cruise missiles, or 
unmanned aerial systems (UAS).

Step 1: Identify the Uncertainty Areas
The example is divided into three un-

certainty types: what the threat (red) can 
do, the operational environment, and the 
friendly (blue) forces structure and tactics. 
The example requires five phases of mission 
execution: the system must search and 
detect the threat, identify the threat’s inten-
tions, decide what actions to take, engage 
the threat, and assess the next step. These 
phases correspond to a physical component 
that will be used to execute that phase. 
Table 1 provides a top-level view of the 
uncertainty inputs with a high and low level 
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of uncertainty associated with each mission 
phase and system components.

Step 2: Develop the Uncertainty Utility 
Function

For this example, we will use a series of 
three general uncertainty utility functions 
as described in the methodology, found 
in Figure 1. The components and mission 
phases are used from Table 1.

Step 3: Describe the Uncertainty Interde-
pendency

For the purpose of this example, we 
develop a notional interdependency table 
between uncertainty factors, provided in 

Table 2. The initial mapping of our blue 
system capabilities (y-axis) to the three 
groupings of uncertainty factors (x-axis) 
are shown. At each intersection, there 
are a total of four possibilities: there is 
no interaction, or one of the three utility 
function types (robust, linear, and fragile) 
exists. The compilation of this table would 
represent the total uncertainty possibilities 
that the system would encounter. The 
selection of the uncertainty utility function 
is dependent on the assessed sensitivity and 
expected performance of the blue capability 
against the range of uncertainty factors. 
This may also be generated through SME 
assessment or iterative simulation of system 

performance under a variety of uncertainty 
factors.

Table 3 provides a notional view of the 
initial uncertainty factors and their effect 
on other interdependent uncertainty factors 
for the air-to-air mission. It is intended 
to start in the left column, and then read 
across from left to right to find the contrib-
uting inputs. A 0 indicates no contribution/
impact to the mission, and a 1 indicates 
there is a contributing input to the uncer-
tainty factor. This is performed for both the 
red (threat) and blue (friendly) subsystems 
that may interact with each other and thus 
have a contributing uncertainty. An exam-
ple is that the variability in target signature 

Table 1. Example uncertainty levels

Phase Component Uncertainty 
type Uncertainty input Inputs (low 

uncertainty) 
Inputs (high 
uncertainty) 

Search/ 
Detection Sensor Threat Target signature Good intel Bad intel 

Identify Identification Threat Target jamming Good intel Bad intel 

Decision 
Making  Decision Making Threat 

Target Low Probability 
of Intercept (LPI)
communications

Good intel Bad intel

Engage Weapon Threat Threat weapons Good intel Bad intel 

Assess Communications Threat Threat tactics Good intel Bad intel 

Phase Component Uncertainty 
type Uncertainty input Inputs (low 

uncertainty) 
Inputs (high 
uncertainty) 

Search/ 
Detection Sensor Environment Weather conditions to 

affect detection
Operating in 
known conditions

Unexpected 
conditions 

Identify Identification Environment Operational conditions 
to affect identification 

Operating in 
known conditions 

Unexpected 
conditions 

Decision 
Making  Decision Making Environment 

Operational conditions 
to affect decision 
making

Operating in 
known conditions 

Unexpected 
conditions

Engage Weapon Environment Operational conditions 
to affect engagement 

Operating in 
known conditions 

Unexpected 
conditions 

Assess Communications Environment Weather conditions to 
affect communications 

Operating in 
known conditions 

Unexpected 
conditions 

Phase Component Uncertainty 
type Uncertainty input Inputs (low 

uncertainty) 
Inputs (high 
uncertainty) 

Search/ 
Detection Sensor Blue Acquisition changes Fully funded Less funded 

Identify Identification Blue Acquisition changes Fully funded Less funded 

Decision 
Making  Decision Making Blue Tactics changes Operating with 

known TTP 
Operating with 
different TTP 

Engage Weapon Blue Acquisition changes Fully funded Less funded 

Assess Communications Blue Interoperability 
changes 

Operating with 
known 
interoperability 

Operating with 
unknown 
interoperability 
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uncertainty will influence red tactics that 
are employed.

Step 4: Collect the Uncertainty Inputs 
(Scenarios)

For this example, we will use three differ-
ent scenarios to evaluate our methodology. 
The first scenario has a generally good 
understanding of the threat and an accurate 
estimation of the uncertainty growth over 
time, which will be relatively small. The 
uncertainty utility functions for the threat, 
environment, and friendly factors will 
range from 0 (not applicable) to 1 (robust).

The second scenario has an average 

understanding of the threat, but with a less 
accurate estimation of the uncertainty. The 
uncertainty utility functions for the threat, 
environment, and friendly factors can range 
from 0, 1, or 2 (linear).

The third scenario has a poor under-
standing of the threat, and a low estimation 
of the uncertainty. The uncertainty utility 
functions for the threat, environment, and 
friendly factors can range from 0, 1, 2, or 3 
(fragile).

Step 5: Conduct Overall Mission Uncer-
tainty Analysis

We are then able to execute our model 

using the three different scenarios. Figures 
2-4 show a boxplot summary of the five 
system characteristics: sensing, identifi-
cation, battle management, engagement, 
and communications, which are shown on 
the y-axis. On the x-axis, the red systems, 
weather / operational environment, and 
blue system uncertainty factors are shown. 
The boxplot shows the mean (red line), the 
1st and 3rd quartile (box), and data within 
the 1.5 inter quartile range (IQR) of the 
upper and lower quartiles (whiskers) of the 
model output. Outliers outside the whiskers 
are labeled as red crosses. The scenarios 
were run for 500 timesteps. The last column 

Table 2. Uncertainty interdependency table

Uncertainty Dependencies

Blue Capabilities Target 
signature

Target 
jamming

Target LPI 
comms

Threat 
weapons

Threat  
tactics

Weather 
impacts

Operating 
environment 
constraints

Blue  
acquisition

Blue  
TTP

Blue 
interoperability

Sensor 1 2 0 1 1 2 2 2 2 0

Identification 2 1 2 3 3 2 2 2 3 3

Decision Making 2 3 0 2 3 0 2 1 2 1

Weapon 1 1 0 2 1 2 2 1 3 3

Communications 0 1 0 0 0 1 2 2 3 3

Key

0: Not applicable

1: Robust utility 
function

2: Linear utility 
function

3: Fragile utility 
function

Table 3. Uncertainty interdependency factors

Key

0: no contribution

1: contribution

 Contributing Uncertainty (read across)

Initial uncertainty 
(read down)

Target 
signature

Target 
jamming

Target 
LPI 

comms

Threat 
weapons

Threat 
tactics

Target signature 0 0 0 0 1

Target jamming 0 0 1 1 1

Target LPI comms 0 0 0 0 1

Threat weapons 1 1 0 0 1

Threat tactics 0 0 1 1 0

Contributing Uncertainty (read across)

Initial uncertainty 
(read down)

Blue 
acquisition

Blue 
TTP

Blue 
interoperability

Blue acquisition 0 0 1

Blue TTP 0 0 1

Blue interoperability 1 1 0
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provides an average of all three factors for the total system perfor-
mance. Note as the scenarios increase in difficulty, the uncertainty 
levels increase, as evidenced with the boxplot shapes. This shift 
towards higher uncertainty levels as more difficult scenarios are 
introduced would indicate a greater dependency of the mission 
factors when increased in uncertainty, and are representative of 
expected trends when faced with more difficult scenarios.

CONCLUSION/FUTURE WORK
This paper has developed a methodology in order to consider 

uncertainty in terms of three perspectives: uncertainty in 

the threat performance and employment, uncertainty in the 
operational environment, and uncertainty in the friendly system 
interoperability and acquisition. Through use of adjacency 
matrices and utility functions, we can calculate the relationships 
between the uncertainty factors and view their interdependent 
effect on each other as their uncertainty levels change. Decision 
makers may utilize this approach in order to visualize the 
difference in uncertainty for system concepts when considering 
decisions regarding the system development. This level of 
uncertainty may also correspond to a relative risk comparison 
of concepts during system development. Future work is reserved 
for quantifying the level of risk to uncertainty within the system 
development lifecycle decision making. Additional work would 
be to apply this methodology to a mission that has available 
programmatic decision data and compare the validity of the 
model predictions to the actual outcomes, in order to determine 
its utility to decision makers.

Future work may evaluate additional programs that have less 
quantifiable system performance measures (such as emergency 
management or cyber operations), or a system of systems config-
uration that may require dependencies between multiple systems 
in order to accomplish the mission. Having a greater number 
of systems and interfaces may imply there is a pareto front on 
the level of expected uncertainty impacts to the overall mission 
performance. 
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 Figure 2. Scenario 1 analysis

 Figure 3. Scenario 2 analysis
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INTRODUCTION

 ABSTRACT
In early design stages, business developers and systems engineers deal with uncertainties on the business problem, in line with 
the company’s strategy. Before designing the system, the business developers need to set the boundaries of the business problem: 
What are the values to deliver to which stakeholders? What are their preferences? What are the future trends or the evolution of 
the markets and the external context? These questions regarding the uncertainties on the definition of the problem may not have 
answers and need to be investigated to assess the value robustness of the possible design alternatives. The aim of this work is to 
support decision-making in business and system design thanks to a broad and rapid analysis of a large amount of business design 
alternatives under uncertainty. We introduce a decision-making support method, called ValXplore, based on visual analysis and 
data analytics to explore the uncertainties on and in the business problem. The method was tested and validated on an industrial 
case study to assess the benefits and limits of the semi-reusability of a launch vehicle. Both business developers and systems 
engineers can rapidly explore a broad space of alternatives to increase the value to the stakeholders, by performing sensitivity and 
uncertainty analyses.

The ValXplore method: 
exploring desirability, 
feasibility and viability 
of business and system 
design under uncertainty

Sonia Ben Hamida, Marija Jankovic, Alain Huet, and Jean-Claude Bocquet
Copyright © 2017 by Sonia Ben Hamida, Marija Jankovic, Alain Huet and Jean-Claude Bocquet. Published and used by INCOSE with 
permission.
[Editor: This paper refers to the Systems Engineering Vision 2025 (Copyright 2014 by the International Council on Systems Engineering), 
INCOSE Systems Engineering Handbook v4 (Copyright 2015 by INCOSE), and ISO 15288:2015.]

This research focuses on the con-
cept stage, where business models 
are built, committed costs are still 
low, but stakeholders’ expectations 

are often unclear and fuzzy. Decisions in 
early stages impact between 75% and 80 
% of overall system life cost (DAU 2013). 
Moreover, increase in system complexity 
is enhancing the need for a more interde-
pendent decision-making process across 
design disciplines and processes (French 
1993, Heisig et al. 2009, Keeney and Keeney 
2009, and Roy 2013). The INCOSE systems 

engineering vision (INCOSE 2014) asks for 
effective decision making by rapidly explor-
ing a broad space of alternatives to maxi-
mize the overall value. Early design stages 
of complex systems consist in defining 
the problem space and characterizing the 
solution space, that is, investigate different 
concepts regarding multiple objectives like 
performance, costs, etc.

However, the definition of the business 
design is often dissociated from the system 
design. Business and engineering teams 
work both on eliciting the added values for 

the customers, but the processes remain 
separated. Moreover, when developing 
space systems, stakeholder objectives are 
often ill formulated or fuzzy. And system ar-
chitecting becomes difficult to orient as the 
boundaries of the system are not yet fixed.

That is why defining a common process 
for business and system design deci-
sion-making is essential to gain insight on 
the best value positioning (desirability) 
and the technical feasibility of the possible 
solutions as well as the economic viability 
of the solution. This triptych needs to be 
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explored conjointly by the business devel-
opers, who capture the customers’ values 
and preferences, hand in hand with the 
systems engineers, who generate solutions 
and evaluate their performances. This paper 
introduces the ValXplore method to explore 
desirability, feasibility and profitability of 
value propositions under uncertainty, and 
provide recommendations to the decision 
makers. The method helps to consider 
the exogenous uncertainties inherent of a 
business problem. The proposed method 
supports the formulation of the business 
problem, the understanding of the impact 
of uncertainties on the system architecture, 
the identification of most valuable system 
architectures by using trade space explo-
ration. The proposed method was applied 
to an industrial study at Airbus Safran 
Launchers on the benefits and limits of the 
semi-reusable launch vehicle. The method 
allows the decision makers and engineers to 
visualize synthesis of the value proposition 
and the feasible design alternatives, gain 
insights on the impact of the exogenous 
uncertainties, and support the formulation 
of recommendations on the design of both 
the business problem and the solutions, 
such as the change of the scope of the 
value proposition or the update of system 
architectures.

BACKGROUND
Business problem decision-making 

support. Traditional systems engineering 
freezes rapidly the specification of the sys-
tem of interest and hampers the exploration 
of the situations to address. The lack of 
analysis on the uncertainty can dramatical-
ly impact the success of the system of inter-
est. More and more the importance of early 
designs stages is underlined. INCOSE is 
broadening the scope of systems engineer-
ing to address not only engineering activi-
ties but also business ones. In the version 4 
of the INCOSE handbook (INCOSE 2015), 
INCOSE added a new process “Business 
or Mission Analysis” in the concept stage, 
prior to the stakeholders needs definition. 
This new process includes the definition of 
the problem space, but this activity remains 
little supported today.

The shift from decision theory to deci-
sion support methodology highlights the 
increasing interest in the decision support 
process (Tsoukiàs 2008). Multi-criteria 
decision methods (MCDM) focus on 
the exploration and the evaluation of the 
alternatives, but not the formulation of 
the problem (Belton and Stewart 2002). 
Moreover, the meaning of the weights, that 
is, the importance of the criterion, is mod-
el-dependent (Belton and Stewart 2002). It 
may be very difficult to elicit the weights in 
multicriteria decision models.

Two approaches exist to support multiple 
criteria decisions: (1) Creating a multi-at-
tribute utility function. The function 
aggregates the different criteria in a single 
criterion. But the aggregated function may 
be difficult to interpret by the decision 
maker. (2) Using pairwise comparison of 
the alternatives. But the ranking results may 
be difficult to justify. The two approaches 
differ in the method to elicit preferences 
from the decision makers, and the transla-
tion of these preferences into quantitative 
measures.

Decision theory does not consider the 
real context of the decision (Tsoukiàs 
2008): who decides, who are the stakehold-
ers, what is the quality of the information, 
the level of uncertainty, etc. Moreover, the 
impact of the decision support process on 
the decision appears to be more important 
than the applied method itself (French 
1993, Keeney and Keeney 2009, and Roy 
2013). For Simon (1983)

“a decision is not an act, but a process”. 
The decision process can become complex 
when the decision problem involves several 

stakeholders carrying different values and 
preferences.

Roy (2013) explains what is missing in 
MCDM and what is expected from a deci-
sion support methodology: Determining 
how to formulate a problem, determining 
the preferences of the decision makers, 
aggregating multiple criteria preferences, 
and developing recommendations.

System architecture trade space explo-
ration. The term trade space is a combina-
tion of the words

“trade-off ” and “play space”. A trade 
space is an “area of evaluation bounded by a 
prescribed set of boundary constraints that 
serve to scope the set of candidate alterna-
tives for further trade study analysis” (Was-
son 2015). The trade space exploration is 
described as a shopping process where the 
decision makers discover what they want 
while they are looking for it. Ross et al. 
(Rader et al.) investigate the value robust-
ness of a system. Ross and Rhodes (2008) 
define value robustness as “the ability of a 
system to continue to deliver stakeholder 
value in the face of changing contexts and 
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Figure 1. ValXplore method
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needs”. The value of the system is examined 
with regard to possible future contexts. For 
example, the operating environment of the 
system, the stakeholders’ preference, the 
market demand, the competitive forces, the 
technologies’ maturity, or the regulatory 
environment can evolve throughout the 
lifecycle of the system. The system’s value 
robustness is assessed with regard to these 
exogenous uncertainties.

Decision-making uncertainties man-
agement. Designing complex systems re-
quires to understand the possible contexts 
where the system will operate (Rhodes 
and Ross 2010). The economic condi-
tions, policies, and markets may evolve. 
These exogenous uncertainties need to be 
explored because they will drive the busi-
ness design decisions. Traditional systems 
engineering describes the system boundar-
ies, external systems, external interactions, 
and the concept of operations but do not 
support a prescriptive analysis to support 
decision-making on the orientation of the 
business design. French (1995) identifies 
10 different sources of uncertainty in the 
decision problem formulation. He groups 
them into problem structuring, exogenous 
uncertainties exploration, and results 
interpretation. Browning et al. (2006) 
explain the implications of uncertainties on 
the development of complex systems. The 
product development activities will vary 
depending on the level of uncertainty.

RESEARCH DESIGN
We undertook our study within Airbus 

Safran Launchers. We applied the design 
research methodology (Blessing and 
Chakrabarti 2009) to develop and validate 
the ValXplore method.

Research clarification. The research 
focuses on business design in early design 
stages. We undertook a comprehensive study 
of the existing situation by conducting a se-
ries on interviews of two business developers 
and six system engineers at Airbus Safran 
Launchers in 2014 (Summers and Eckert 
2013). The main questions and hypotheses 
were defined based on both the interviews 
and the documentation analysis of in-house 
processes and projects deliverables.

Descriptive study I: understand design. 
We observed the concurrent engineering 
sessions, recorded team discussions and 
activities of the project detailed in the case 
study section. Sixteen (16) concurrent 
engineering sessions were performed, 
involving 15 disciplines. The documents 
of the project were analyzed to understand 
the activities and deliverables realized by 
the team.

Prescriptive study: develop design 
support. The ValXplore method was 
applied to industrial projects within Airbus 

Safran Launchers. Each step and output of 
the method was recorded. A review of the 
research tools in visualization was done 
based on the most influential research in 
visualization identified by the IEEE VIZ 
community and summarized the VIS25 
timeline (Rhyne et al. 2015). The com-
mercial solutions were also assessed based 
on Gartner’s magic quadrant on business 
intelligence (Gartner 2016a) and advanced 
analytics platforms (Gartner 2016b). The 
relevant tools to support the method 
were compared and selected. The project’s 
post-mortem review was organized to iden-
tify the main successful and unsuccessful 
elements about the methods, the tools, and 
the organization.

THE VALXPLORE METHOD 
The ValXplore is a two-stage decision 

support method to structure and explore of 
the business design problem and the relevant 
system design solutions, see Figure 1. The 
decision maker will learn and understand 
what is possible (feasibility), what is preferred 
(desirability) and what matters (viability).

Stage 1: Design Business Problem 
The goal of the stage 1, described in 

Figure 2, is to develop a common under-
standing of the business design problem, 
that is, to define the decision to make and 
the criteria to evaluate the alternatives. We 
assume the decision makers do not have 
a clear idea of the problem (Moscarola 
1984). The questions supported are: What 
are the objectives and attributes? What are 
the preferences of the decision makers? 
We propose to do a sensitivity analysis on 
the design of the business problem. This 
activity requires to generate a rich num-
ber of alternatives. A shortlist of potential 
alternatives will be selected at the end of 
the first stage to investigate in more details 
their strengths and weaknesses.

For this first stage, we use the research 
tool LineUp (Gratzl et al. 2013 and Gratzl 
2014) to create, visualize, and explore rank-
ing of the business design alternatives, and 
perform a visual analysis of the multi-cri-
teria decision problem. The visual analysis 
helps to interpret the ranking, rapidly com-
pare and analyse alternatives rankings, and 
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Figure 2. Stage 1: Design business problem – flowchart



SP
ECIA

L 
FEA

TU
R

E
D

ECEM
B

ER
  2O

24
VOLUM

E 27/ ISSUE 6

26

understand how the multiple heterogeneous 
attributes affect the ranking. The decision 
makers can interactively combine attributes 
and refine parameters to explore the effect 
of changes in the attribute combination, and 
gain insights on the problem formulation. 
The stage 1 encompasses value-focused and 
alternative-focused thinking. The outcomes 
are the formulation of the business design 
problem, and a shortlist of alternatives 
further explored in stage 2.

Methods using hierarchies usually 
propose a top-down approach to define the 
objectives and refine them, then model the 
preferences and evaluate the alternatives. 
In the first stage, we do these three steps 
all-in-one to give more insights to the de-
cision makers on the problem formulation. 
Table 1 lists all the variables characterizing 
the design problem and that we explore.

Problem structuring.
Identify attributes. An objective indi-

cates the direction the decision makers 
would like to go while an attribute α 
measures the achievement of the objective. 

For example, the objective “minimize time- 
to-orbit” is measured with the attribute 
“days”. The attribute gives the information 
to understand and assess if the associat-
ed objective is achieved. In this step, the 
decision makers list their objectives and as-
sociated attributes. They express what they 
want, value, and their constraints. Bond et 
al. (2010) identify two obstacles to generate 
objectives: “not thinking broadly enough 
about the range of relevant objectives, and 
not thinking deeply enough to articulate 
every objective,” and recommend to use a 
list of possible objectives to identify addi-
tional relevant objectives. In the next steps, 
we propose to explore different combina-
tions of attributes to overcome these issues.

Generate alternatives. The designers 
generate a rich number of potential alterna-
tives x. They ask themselves, for example: 
What could be the perfect, terrible, and 
reasonable alternatives? They evaluate the 
attribute values with quantitative perfor-
mance models or with subjective expert 
judgements. Missing values can be inferred 
by computing mean and median or with 

more complex algorithms with the tool 
LineUp. The decision makers are visually 
aware of the missing data with a dashed 
border inside the bars. Note that the list of 
alternatives will evolve with the design of 
the business problem, as this is a search and 
learning process increasing awareness on 
the objectives of the design problem. See 
Table 2.

Normalize attribute values. The objective 
is to compare the attributes aj with each 
other. After importing the data into Line-
Up, the attribute values are normalized, that 
is, the attribute values are mapped to the in-
terval [0,1], where 0 is “of no interest” and 
1 “of interest”. It is possible to test different 
normalizations by changing the mapping 
function m, and instantly see the effect on 
the ranking. The decision makers can anal-
yse the distribution of the attribute values, 
to understand to what extent the attribute 
discriminates the highest values.

Table 1. Variables of the design problem explored in stage 1

Term Notation Definition and equation

Alternatives �⃗�𝑥𝑥𝑥 �⃗�𝑥𝑥𝑥 = (
𝑥𝑥𝑥𝑥1
𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥𝑚𝑚𝑚𝑚

) 

Attribute values 𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 = (𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)1≤𝑖𝑖𝑖𝑖≤𝑚𝑚𝑚𝑚,1≤𝑖𝑖𝑖𝑖≤𝑛𝑛𝑛𝑛 

Filter range [𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ] 
Filters 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  on the attribute vector 𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗⃗⃗⃗⃗  to remove 
alternatives with attribute value 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  outside the filter range 
[𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ] from the ranking. 

Mapping 
function 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 ∶  𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 → [𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚] | 0 ≤  𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤  𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤  1 

Mapped 
attribute values 𝐴𝐴𝐴𝐴’ 𝐴𝐴𝐴𝐴′ = 𝑚𝑚𝑚𝑚(𝐴𝐴𝐴𝐴) = (𝑎𝑎𝑎𝑎′𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)1≤𝑖𝑖𝑖𝑖≤𝑚𝑚𝑚𝑚,1≤𝑖𝑖𝑖𝑖≤𝑛𝑛𝑛𝑛 

Hierarchy level 𝑙𝑙𝑙𝑙 Number of levels in the hierarchy 

Hierarchy level 
weights 𝑊𝑊𝑊𝑊𝑘𝑘𝑘𝑘 

𝑊𝑊𝑊𝑊𝑘𝑘𝑘𝑘 is the weight assigned to the aggregated attributes of level k: 
𝑊𝑊𝑊𝑊𝑘𝑘𝑘𝑘 = (𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)1≤𝑖𝑖𝑖𝑖≤𝑚𝑚𝑚𝑚,1≤𝑖𝑖𝑖𝑖≤𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1

| 0 ≤  𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤  1 ∧ ∑𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  1 
Where 𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘−1 is the number of groups at level (𝑘𝑘𝑘𝑘 − 1) 

Alternative 
score 𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠(�⃗�𝑥𝑥𝑥) = 𝐴𝐴𝐴𝐴′ ∏ 𝑊𝑊𝑊𝑊𝑙𝑙𝑙𝑙−𝑘𝑘𝑘𝑘

𝑙𝑙𝑙𝑙−1

𝑘𝑘𝑘𝑘=0
 

Table 2. Example of attribute values

Alternative a01 a02 a03 a04 a05 a06 a07 a08

x01 0.2 TRUE high risus 1.34 € 1 21.4

x02 0.2 2.5 TRUE high 5.53 € 0 78.7

x03 0.7 7.6 FALSE medium 5.67 € 1 99.1

x04 3.4 2 FALSE et 5.69 € 45

x05 0.6 TRUE low nisi 9.35 € 1 11.2

x06 9.8 8.8 FALSE high at 8.59 € 1

Figure 3. Normalize attribute values – 
mapping function and filter range

To exclude alternatives x not compliant 
with constraints, filter ranges [ fmin  , fmax ] 
can be applied on the attributes A. For 
example, the decision makers may want 
to exclude alternatives not compliant with 
regulations.

Can you group attributes (lateral 
extension of the hierarchy)? The decision 
makers combine attributes to construct a 
weighted sum and sort the alternatives.

Group attributes. The decision makers 
try out different hierarchies to structure the 
list of identified attributes in a meaningful 
way and gain further insight on the prob-
lem by comparing the alternatives’ rankings 
with different attribute combinations. See 
Figure 4.

Are there holes in the hierarchy? The 
designers can ask themselves what is good 
or bad about each alternative. Are the 
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strengths and weaknesses of the alternatives 
captured through the identified attributes? 
If not, identify the missing attributes and 
add them.

An attribute can be added in several 
weighted sums by duplicating the attribute 
column. For example, the attribute “price” 
is relevant for all the customer segments, 
with possibly different preferences. 

Preference modelling. The preferences 
of the decision makers can be captured 
through many ways, such as market 
research, focus groups or interviews with 
the stakeholders about possible contexts of 
use. However, conflicting preferences may 
exist making hard to aggregate preferences 
and maximize value, and preferences may 
be fuzzy for unarticulated needs. In this 
step, we consider individual stakehold-
er preferences and how they may vary 
across stakeholders. We explore changes in 
stakeholders’ preferences that can occur in 
response to context shifts, like economic 
changes, market growth evolutions, threats, 
etc. French (1995) identifies two types of 
uncertainties related to preference model-
ling: (1) Uncertainty about the evolution of 

future beliefs and preference: For example, 
what are the possible evolution of the stake-
holders’ preferences? (2) And uncertainty 
about judgements. We propose to explore 
both uncertainties by interactively combin-
ing criteria and interpreting the effect of 
these changes in the criteria combination.

Change attributes weight. The prefer-
ences are defined by weights associated to 
hierarchy level weights, Wk , which group 
both attributes’ weights and weighted sum 
weights. This step consists in changing 
the weight of one or more attributes to 
understand how the attributes influence the 
ranking of the alternatives. See Figure 5. 
The decision makers can explore stake-
holders’ preference changes over time or 
stakeholders’ relative importance regarding 
the company’s strategy to simulate, for 
example, market growth evolution.

Does the attribute impact the ranking? 
The decision makers change attributes 
weight and check if the ranking is impact-
ed. Guiding questions:

 ■ How far to decompose the attributes 
(vertical extension)? The weights of the 
lowest attributes (leaves) of the hier-

archy are changed to see if it impacts 
alternatives’ ranking. 

 ■ For each attribute, does the selection 
of the alternative could be altered if the 
attribute was excluded? If not, withdraw 
the attribute. 

Change attribute values. The attribute 
values may involve uncertainties and judg-
mental imprecisions. In this step, we pro-
pose to adopt an alternative-focused think-
ing to look at the strengths and weaknesses 
of the relevant alternatives. The decision 
makers can explore the effect of changes in 
attribute values or optimize the values and 
weights to find the best possible ranking of 
a specific alternative. See Figure 6.Figure 4. Group attributes

Figure 5. Change attributes weight, visual impact on ranking

Figure 6. Change attribute values

Recommendation formulation
Synthesize insights. Each step helps the 

decision makers understand and explore 
their beliefs, perceptions, and preferenc-
es and form and evolve their judgments. 
LineUp affords to take snapshots of the 
settings. We suggest saving the meaningful 
settings that help the decision makers to 
gain insights on the robustness of the top 
ranked alternatives over a range of possible 
futures. For example, what is the robust-
ness of the final ranking? What attributes 
combination and weighting give the same 
ranking and affects the final ranking? What 
attribute values highly impact the ranking? 
These values may require a more in depth 
evaluation of the alternatives’ attribute 
values. See Figure 7.

Pre-select alternatives. Select a shortlist 
of the top-ranked alternatives.
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Stage 2: Explore Business and System 
Design Alternatives 

In stage 1, we selected a shortlist of 
alternatives for more detailed investigation 
and evaluation in stage 2. See Figure 8.

Define the possible futures. In this step, 
the exogenous uncertainties are character-
ized. A scenario is a what-if story used to 
explore critical future uncertainties. Scenar-
ios do not aim to predict the future and are 
based on knowledge from the past and the 
present. They help to examine the plausible 
futures – such as the worst, the most likely, 
and the best cases – to understand the range 
of possible outcomes. Scenario analysis 
helps to consider high uncertainties and to 
identify potential challenges.

We propose to first establish the scope 

and the focus of the scenarios and to 
identify the factors and their positive or 
negative influence. The wider the range 
of solicited experts, the more exhaustive 
the identification of scenarios. Then, the 
most influential factors are identified. For 
each critical uncertainty, the plausible 
alternatives and assumptions are identified: 
What is assumed in this scenario? What 
assumptions need to be made to arrive 
to this scenario but are missing? How 
good are these assumptions? What-if an 
alternative assumption is made?

Define the business and system design 
variables. We consider both business and 
system design variables. Business variables 
refer, for example, to the value proposition, 
the customer segments, the price (margin), 

etc. We propose to apply design structure 
matrices (DSM) in concurrent engineering 
(CE). Today, the DSM are applied to the 
system to increase the pace of work by 
bringing together the relevant disciplines.

Understand how the business and 
system design variables are correlated. A 
scatter plot displays the correlation between 
a pair of variables, while the regression 
analysis quantifies the relationship 
among two or more variables. Scatter plot 
matrices are constructed to understand 
the correlation between several variables, 
identify trade-off, and possible missing 
variables to characterize the problem and 
compare the design alternatives.

Identify feasible design alternatives.
Evaluate design alternatives’ 

Figure 7. Synthesize insights – settings’ snapshots

Define the
possible futures

Understand how
the variables are

correlated

Identify the
feasible design

alternatives

Evaluate design
alternatives

performances

Select the “best”
design

alternative

Explore problem
space (sensitivity
analysis on the
value drivers)

Explore solution
space (sensitivity
analysis on the

alternatives’
performances)

Define the
Business &

System design
variables

Figure 8. ValXplore stage 2 steps
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performances and cost. Develop 
performance and cost models to evaluate 
the performances of the design alternatives.

Explore solution space (sensitivity 
analysis on the alternatives’ performances). 
Perform sensitivity analysis on the design 
variables.

Explore problem space (sensitivity 
analysis on the value drivers). Change the 
variables describing the value proposition, 
the target customers, etc. Change the 
exogenous uncertainties to understand the 
impact on the design alternatives.

Provide recommendations. Example 
of recommendations: change the value 
proposition, optimize a design alternative. 
Refine a performance or cost model. We 
select the best design alternative regarding 
changing contexts.

INDUSTRIAL CASE STUDY: THE SEMI-
REUSABLE LAUNCH VEHICLE 

The proposed method was applied on 
an industrial project at Airbus Safran 
Launchers. The goal of the project is to 
understand what the benefits and the 
limitations of various reuse options for a 
launch vehicle are. The business design 
problem consists in understanding the 
conditions where reusability of the launch 
vehicle brings value to the future customers 
and their potential needs, including for 
example various targeted orbits and payload 
constitutions. Is it worth it to invest in such 
or such reusable system?

The project involves the institutional 
customers. The project team gathers 
a dozen of experts from the business 
development, system engineering, re-entry, 
costing, design office, mission analysis, and 
propulsion departments at Airbus Safran 
Launchers.

Stage 1: Design the business problem 
For stage 1, we used the demo version 

of LineUp, freely available at http://lineup.
caleydo.org . The decision makers expressed 
the need to “reinforce the selection of the 
decision criteria.”

Problem structuring. 
Identify attributes. Market research was 

done to identify a list of potential objectives 
and attributes. Over twenty values were 
identified with regard to the considered 
customer segments.

Generate alternatives. The designers did 
an extended literature review and identified 
a wide set of reuse concepts. The perfor-
mances were assessed based on documen-
tation of expert judgement.

Normalize attribute values. The attri-
bute values were mapped to the interval 
[0,1], where 0 is “of no interest” and 1 “of 

interest”. Some “killing” attributes were 
identified.

Group attributes. The decision makers 
discussed the potential adding and 
withdrawing attributes. They identified key 
objectives and discussed which attributes 
could measure their achievements. They 
tested several hierarchies, i.e., the attributes 
of interest and the way to group them.

Preference modelling.
Change attributes weight. The decision 

makers took time to set their preferences 
as they add divergent objectives. They 
were unsure about the relative preference 
of some attributes, and the selection of 
the alternatives. can be captured through 
market or through interviews with the 
stakeholders about possible. Changing 
in the weighting helped to justify the 
importance of the attributes. When 
lowering the importance of one the 
attributes, some surprising alternatives 
ranked on top, and it helped to understand 
that non-economically viable solutions 
could be wrongly selected if this attribute’s 
weighting was too low.

Change attribute values. Some attribute 
values raised discussion about their 
possible imprecisions. The experts assed 
the alternatives and, to reach consensus, the 
decision makers explored the effect on the 
ranking of changes in some attribute values, 
such as the technical readiness level of the 
alternatives. The designers also explored 
how to optimize the values and weights of 
preferred alternatives to understand their 
strengths.

Recommendation formulation.
Synthesize insights. Screenshots of the 

settings were captured with LineUp to 
capture the robustness of the top ranked 
alternatives.

Pre-select alternatives. The decision 
makers selected the shortlist of alternatives 
for further evaluation. See Figure 9.

Stage 2: Explore the system design 
alternatives 

The objective of this stage is to explore 
what is possible and what is not. A more 
in-depth analysis is performed to assess 

the risks and opportunities of the selected 
alternatives.

Define the possible futures. Three 
market scenarios were identified to 
consider the uncertainties on market 
demand, such as the launch of big 
constellations.

Define the business and system design 
variables. The design structure matrix 
(DSM) of the launch vehicle was filled 
in to understand which discipline needs 
which information. The data flows were 
defined from the optimized DSM. More 
than forty system design variables were 
identified by the engineering team such as 
the configuration of the vehicle (number of 
stages and boosters), the booster diameter, 
the propellant type (liquid, solid), etc. 
The business variables are for example the 
pricing strategy, the market coverage, the 
launch cadence.

The engineering team worked in con-
current engineering sessions every week 
to set up and evaluate the feasibility of the 
systems architectures.

Understand how the business and 
system design variables are correlated. 
Scatter plot matrices were built up with 
the data analytics software Tableau©. New 
variables were identified from this analysis 
to better depict the relationship between 
the market scenarios and the systems’ 
performances.

Evaluate design alternatives’ 
performances and cost. Quick loops 
were designed to rapidly evaluate the 
feasibility of the design alternatives. Steele 
et al. (2002) developed examples of SRLV 
performance models.

Explore problem space. A sensitivity 
analysis was performed on the cost drivers.

Explore solution space. Different value 
propositions were studied and the adapt-
ability to market of the fleets.

Provide recommendations. The 
exploration helped to understand the 
strengths and weaknesses of the three 
alternatives selected. The team decided 
to withdraw on the alternatives and 
further explore the two remaining 
ones. The exploration helped to identify 
recommendations on the following axes:

 ■ Refine parts of the economic model, 

Figure 9. Illustration of case study stage 1
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 ■ Explore most important cost drivers, 
 ■ Improve the performances of the fleet 
(system architecture changes), 

 ■ Understand the conditions where 
reusability is most and less interesting. 

CONCLUSION
Business design and system design are 

often separated activities in early design 
stages, although they are interlinked. 
We propose a method to explore the 
desirability, feasibility and viability 
of business and system design under 
uncertainty. We characterized the 
uncertainties on the business problem 

and defined a first stage to explore these 
uncertainties to gain insights on structuring 
the problem and to rapidly assess the value 
robustness of the design alternatives. A 
shortlist of alternatives is then selected to 
further refine the design. In stage 2, we 
propose to extend the boundaries of the 
design exploration to the business design 
by using data analytics.

The method was successfully validated 
on an industrial project and showed how 
it could support the understanding of the 
benefits and limits of a business case. The 
project team acknowledge that “decision 
criteria cannot be fixed since the beginning 

because stakeholders, facing options, learn 
gradually what they in fine expect and 
prefer”. The project team was satisfied by 
the method to “ease the understanding of 
each discipline’s contribution” and “ease the 
communication between the business and 
engineering teams.” The decision makers 
could gain insight on the design problem 
in a short period of time. However, the 
analysis is dependent on the quality and 
reliability of data (Gordon 2008) and 
concerns were expressed on carefully 
interpreting the results. 
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INTRODUCTION

 ABSTRACT
Exploratory modelling is an emerging approach which can address the challenge of model-based decision making in dealing with 
input model uncertainties. Exploratory modelling samples from an input uncertainty space and generates extensive computational 
experiments to analyse possible model behaviours in an output solution space. The way that the input uncertainty space is delineated 
influences the results of exploratory modelling and its computational cost. In this article, we show the statistical significance 
of the implication of the size of an input uncertainty space on the resulted output solution space. We also propose a heuristic 
approach which informs the delineation of input uncertainties by screening the relevant model behaviour in the solution space. An 
illustrative example of an aircraft fleet management system is used to demonstrate the implementation of our approach in practice. 
We conclude that the delineation of input uncertainty space can be a way to control simulations in exploratory modelling and to 
enhance the efficiency of the exploration process and the confidence of the final results.
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Models are used widely in the 
decision science to represent 
a system of interest and to 
assist in the decision-making 

process. The analysis of model behaviour 
for decision making is challenged by the 
presence of various forms of uncertainty. 
Exploratory modelling is an emerging field 
which addresses this challenge through ex-
ploring the implications of various possible 
values of input uncertainties on the model 
behaviour (Bankes 1993, Kwakke, 2017, and 
Moallemi et al. 2017). Exploratory model-
ling uses one or more simulation models to 
generate the possible impacts of the input 
uncertainty space on the output solution 
space in the format of an ensemble of 
computational experiments (Bankes et al. 
2001). The design of these experiments—
in terms of which uncertainty factor to 
choose, how to delineate the uncertainty 
space, how to sample from the uncertainty 
space, and how many samples to collect—is 

critical in the exploratory modelling pro-
cess (Pianosi et al. 2016, Schulze et al. 1999, 
and Bergmann et al. 2011). Experimental 
design is critical as different designs can 
result in different ensembles of generated 
experiments and varied output solution 
spaces, and therefore, can sometimes result 
in divergent decision insights (Pianosi et al. 
2016, and Kwakkel and Pruyt 2015).

Previous studies have discussed the 
aspects of the design of experiments 
in exploratory modelling to different 
extents (for example Lempert et al. 2003, 
Kwakkel et al. 2010, and Haasnoot et al. 
2013). In this article, we focus on one of 
these aspects: the delineation of the input 
uncertainty space. We assume that the 
behaviour of the output solution space 
is dependent on the areas of the input 
uncertainty space from which samples 
are taken, and therefore, not all areas of 
the input uncertainty space should be 
investigated if only a specific behaviour in 

the output solution space is of interest to 
decision makers. Accordingly, this article 
answers the two following questions: 

 ■ Question 1: How sensitive is the output 
solution space to changes in the input 
uncertainty space? 

 ■ Question 2: How can we inform the de-
lineation of the input uncertainty space 
by screening a behaviour of interest in 
the output solution space? 

We first show the significance of the 
input uncertainty space on the distribu-
tion of the output solution space, with an 
illustrative exploratory modelling example 
in the aircraft fleet management system. We 
then propose and demonstrate a heuristic 
approach to inform the delineation of the 
input uncertainty space based on screening 
output solutions. An informed delinea-
tion of input uncertainties can reduce the 
computational burden of the explorato-
ry modelling process by avoiding extra 
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simulations based on the samples from the 
irrelevant areas of input uncertainty space. 
This screening also presents a more detailed 
picture of the particular area of interest 
within the solution space.

The remainder of the article is structured 
as follows. The second and third sections 
present an overview of the research back-
ground and methods used in this work. The 
fourth section answers the two research 
questions posed. The final section con-
cludes the paper and draws future research 
directions.

BACKGROUND
This section gives a broad overview of 

exploratory modelling and why experi-
mental design, of which the delineation of 
uncertainty space (the focus of this article) 
is one part of design, that is critically 
important.

EXPLORATORY MODELLING
Exploratory modelling (Lempert et al. 

2003, Bankes et al. 2001, and Bankes 1993) 
challenges the reliance on deterministic 
(or even probabilistic with known distri-
butions) sets of model structures and input 
parameters in modelling in the face of 
future uncertainties. Exploratory modelling 
supports the exploration of the impacts of 
a diversity of parametric and non-para-
metric assumptions on the output solution 
space, when the model operates in ‘deep or 
severe uncertainty’ (Lempert et al. 2003, 
and BenHaim 2006). Exploratory model-
ling generates various model responses in 
thousands of computational experiments, 
using a simulation model and sampling 
from an input uncertainty space. It then 
analyses the generated experiments with 
a range of analytical techniques to draw 
various decision insights and modelling 
conclusions (Moallemi et al. 2017, Kwakkel 
2017, and Lempert 2013). See (Moallemi 
et al. Submitted-a, and Walker et al. 2013) 
for a further explanation of exploratory 
modelling. Exploratory modelling shares 
similarities with sensitivity analysis as they 
both use computational experimentation 
for the treatment of uncertainty. However, 
contrary to sensitivity analysis, exploratory 
modelling does not have any pre-assump-
tions regarding the probability distribution 
of the uncertainty space. In other words, 
exploratory modelling can deal with Knigh-
tian form of uncertainty where no infor-
mation (for example, ranking, probability 
distributions, estimates) exist about the 
uncertain parameters.

Experimental design
Exploratory modelling is based on the 

generation and analysis of computational 
experiments. The way that computational 

experiments are established and 
performed—that is, their experimental 
design— influences the nature and number 
of generated results, the insights gained 
from them, as well as the computational 
cost and time to complete the experiments 
(Kwakkel and Pruyt 2015). Experimental 
design includes a decision regarding the 
list of critical uncertainties, the space of 
the uncertainty, a sampling strategy for 
choosing from this space, an appropriate 
number of samples, and the response 
variables (outcomes of interest) in the 
experiments. Among them, delineating 
the uncertainty space is a delicate aspect 
of experimental design. An extreme 
uncertainty space can lead to an extreme 
computational burden and too plural 
(many) conclusions, and a very narrow 
uncertainty space can lead to the risk of 
missing potential future possibilities from 
the analysis. Several approaches have been 
introduced to delineate the uncertainty 
space, including: setting independent 
uniform distributions with lower and upper 
bounds (Pianosi et al. 2016), limiting the 
feasible uncertainty space using a priori 
knowledge for filtering subsets associated 
with a certain outcome (Kasprzyk et al. 
2013), and assigning likelihood weights to 
different values from the uncertainty space 
based on a comparison between model-
generated and observed values (Beven and 
Binley 1992).

METHODS
We use four methods for answering the 

two questions of this article. This section 
introduces these methods briefly. The way 
that we use each method is explained later.

ANOVA 
ANalysis Of VAriance (ANOVA) is a 

statistical technique to test the statistical 
significance of difference between means 
of multiple groups (Montgomery 2001). 
ANOVA is based on a null hypothesis of 
no significant difference among groups 
and an alternative hypothesis of at least 
one significant difference among groups. 
Assuming initially that the null hypothesis 
is true, the observed difference of group 
means is called statistically significant if it 
is concluded unlikely to happen by chance. 
ANOVA uses the F-statistic (that is, a ratio 
of two variances) to test the statistical 
difference. ANOVA generate the F-statistic 
and compared its associated probability 
of occurrence (p-value) with a threshold 
(significance level). A p-value less than a 
threshold justifies the rejection of the null 
hypothesis and the support of the alterna-
tive hypothesis. See Iverson and Norpoth 
(1987) for further explanation of this 
technique.

Multi-dimensional clustering
Multi-dimensional clustering (Gerst et 

al. 2013) groups many potential model 
behaviours, generated based on different 
samples from the input uncertainty space, 
into clusters of similar behaviours. The 
appropriate number of clusters is decided 
based on the value of Bayesian information 
criterion (BIC) and Aikake’s information 
criterion (AIC) (McLachlan and Peel 2004). 
Multi-dimensional clustering uses this ap-
propriate number of clusters and generates 
a mixture of Gaussian distributions to esti-
mate the distribution of system behaviour 
in the chosen number of clusters. 

Scenario discovery
Scenario discovery is a statistical, da-

ta-mining process used to identify subsets 
of the input uncertainty space that result in 
similar classes of behaviour in the output 
solution space (Bryant and Lempert 2010, 
and Groves and Lempert 2007). Scenario 
discovery starts by generating computa-
tional experiments using a model based on 
input samples from the input uncertainty 
space. It distinguishes similar classes of 
behaviour among experiments and selects 
alternative subsets from the input uncer-
tainty space (in the format of hyper-di-
mensional boxes) to describe the classes 
of behaviour. Scenario discovery uses two 
measures of quality (coverage and density) 
and a p-value for comparing the generated 
subsets and for choosing the best subset of 
the uncertainty space responsible for the 
creation of the behaviour of interest in the 
model. Coverage describes how universally 
a subset can cover all experiments from 
a same class of behaviour, and density 
describes to which extent samples from a 
subset can only result in experiments with 
a certain class of behaviour and no other 
behaviours. Scenario discovery has been 
implemented using a number of algorithms 
(Lempert et al. 2008) such as classification 
and regression tree (CART) (Breiman et al. 
1984) and patient rule induction method 
(PRIM) (Friedman and Fisher 1999). See 
(Moallemi et al. 2017, Lempert et al. 2013, 
Lempert and Groves 2010, and Moallemi 
and Malekpour 2018) for implementations 
of scenario discovery. 

Multi-objective robust optimisation 
Multi-objective robust optimisation is a 

group of methods which generate alterna-
tive solutions for maximising or minimis-
ing multiple objective functions under 
constraints. The solutions much remain 
valid under any future conditions (Deb 
2001, Marler and Arora 2004, and Ben-
Tal and Nemirovski 2000). The result of 
multi-objective robust optimisation is not 
a single optimal solution. The multiplicity 
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of (conflicting) objectives necessitates the 
generation of Pareto optimal solutions, 
which can compromise among multiple 
objectives. The presence of future uncer-
tainties also necessitates robust solutions 
where the performance of solutions 
remains insensitive to drastic changes in 
the input parameters in the face of future 
uncertainties. Multi-objective evolution-
ary algorithms such as NSGAII (Deb and 
Pratap 2002) and Borg (Hadka and Reed 
2013), also see Maier et al. (2014) and the 
non-dominated sorting search algorithm 
such as Woodruff and Herman (2013) are 
among popular methods for generating and 
post-processing (respectively) of Pareto and 
robust solutions in multiobjective optimis-
ation problems. In both cases, a simulation 
model is used to assess the impact of the 
solution space on objective functions and 
to identify the Pareto robust solutions. See 
(Moallemi et al. Submitted-b, Kasprzyk et 
al. 2013, and Hamarat et al. 2014) for the 
implementations of multiobjective robust 
optimisation.

THE DELINEATION OF THE INPUT 
UNCERTAINTY SPACE IN EXPLORATORY 
MODELLING 

This section addresses the two questions 
raised in Introduction using an illustrative 
example of asset acquisition and manage-
ment of aircraft fleets.  

THE SIGNIFICANCE OF THE INPUT 
UNCERTAINTY SPACE

This section shows the significance of 
the way we delineate the input uncertainty 
space. While it is clear that changing the 
delineation of uncertainties impacts the 
results, this section aims to show the 
statistical significance of this impact and 
also to demonstrate the variation in results 
visually. We explain the steps taken, the 
generated results and discussion as follows.

Process 
We assess the significance of the input 

uncertainty space in three steps based on 
the methods explained in Methods: 

 ■ Step 1: Different ensembles of computa-
tional experiments are generated based 
on sampling from full and truncated 
input uncertainty spaces.

 ■ Step 2: A joint kernel density estimate 
(KDE) diagram is used to show the 
variation the output solution space — in 
terms of the state of selected model 
outputs — in response to the subsetting 
of the input uncertainty space. ANOVA 
is also used to test the statistical 
significance of variation among the 
multiple ensembles of generated 
experiments with full and truncated 
input uncertainty space.

 ■ Step 3: The distributions of the output 
solution space — in terms of states of 
selected model outputs in the last time 
step of the simulation duration — are 
represented in series of scatter plots, 
each plot based on sampling from one 
specific area of the input uncertainty 
space. The states of the model outputs 
in the solution space are also clustered 
using the multi-dimensional clustering 
technique. We compare the clusters and 
scatter plots to show how the choice 
of delineation in the input uncertainty 
spaces impacts the distribution of the 
output solution space.  

Results and discussion 
To analyse the impact of sampling from 

different areas of the input uncertainty 
space, we generated three ensembles of 
experiments, each including 200 model 
runs. Ensembles are generated based on 
sampling from the full, the first quartile, 
and the fourth quartile of the uncertainty 
space and the decision space—where 
different combinations of decisions 
regarding the size of acquisition and 
maintenance can be chosen from. See 

Table 1 for the full range of uncertainties 
(also see Appendix A). See Table 2 for the 
range of decision variables. Experiments 
in each ensemble represent the model 
response in terms of (average) in-service 
aircraft and total (acquisition and 
maintenance) costs, as two outcomes of 
interest.

The distribution of the output solution 
space—in terms of the state of in-service 
aircraft and total costs—in each ensemble 
was drawn in a joint KDE diagram (see 
Figure 1). It is observed that the choice 
of the input uncertainty space in each 
ensemble creates a different distribution of 
the solution space. This difference is more 
visible in the distribution of in-service 
aircraft (Figure 1 (b)). This observation 
can prove our initial assumption regarding 
the significance of the delineation of the 
input uncertainty space. We also performed 
ANOVA to statistically verify the visual 
observation.

The result of ANOVA in Table 3 shows 
that in both model outcomes, the null 
hypothesis (similarity of the means of 
distributions) is rejected and the alternative 
hypothesis is supported.  

Table 1. List of uncertain parameters with their ranges of variation

Uncertain parameter Range 

The risk that an aircraft is lost during operation 0.00026 – 0.00234 (–) 

Lifetime of aircraft 37440 – 336690 (hour) 

Total required flying hours 12 – 200 (hour/week) 

Expected time spent by an aircraft in CAP 8 – 45 (week)

Time between CAP events 16 – 40 (week)

Expected time spent by an aircraft in DM (Time in DM) 5 – 25 (week) 

Time (flying hours) between DM events 200 – 1800 (hour)

Expected time spent by an aircraft in OM (Time in OM) 3 – 15 (week)

Time between OM events 50 – 450 (hour)

Available capacity for CAP 1 – 7 (–)

Number of purchased aircrafts 1 – 7 (–)

OM available capacity 1 – 7 (–)

DM available capacity 1 – 7 (–)

Table 2. The decision space

Decision variable Range 

Available capacity for CAP 1 – 7 (–) 

Number of purchased aircrafts 1 – 7 (–) 

OM available capacity  1 – 7 (–) 

DM available capacity 1 – 7 (–) 
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(a) (b)
Figure 1. KDEs for (a) total costs and (b) in-service aircraft in three ensembles of experiments for the full range, first quartile, and 
fourth quartile of uncertain parameters

Table 3. The results of ANOVA (5% significance level) for the thhree ensembles of experiments for (a) total costs and 
(b) in-service aircraft

SUMMARY

Ensemble Count Sum Average Variance

Full range 200 53070 265.35 12574.16

First quartile 200 62661 313.305 12917.03

Last quartile 200 50184 250.92 10148.98

ANOVA

F P-value F critical

17.95669 2.67E-08 3.010815

ANOVA

F P-value F critical

150.1713 1.48E53 3.010815

SUMMARY

Ensemble Count Sum Average Variance

Full range 200 278.6238 1.393119 1.323377

First quartile 200 496.2475 2.481238 1.387502

Last quartile 200 166.5347 0.832673 0.096493

(a)

(b)

Figure 2. Clusters of experiments with similar behaviour regarding in-service aircraft and total costs based on (a) the 
full range, (b) first quartile, and (c) fourth quartile of uncertain parameters. Note that clusters are named randomly 
and the features of clusters from one plot to another do not remain similar.

Cluster 2

Cluster 3

Cluster 1

Cluster 4

(c)(a) (b)

Cluster 1

Cluster 2Cluster 3

Cluster 4

Cluster 1

Cluster 2

Cluster 3

Cluster 4
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We clustered and plotted generated 
experiments in each ensemble with respect 
to the state of in-service aircraft and total 
costs in a scatter plot (see Figure 2). The 
results show that truncated uncertainty 
spaces result in a high resolution of the 
solution space, but they also disregard some 
possible variations in the output solution 
space. For example, Figure 2 (a), based on 
the full range of uncertainties, shows the 
possible variations in the solution space 
(i.e., from about 0 to 8 in-service aircraft 
and from about B$50 to B$600 total costs) 
in a high-level picture. However, Figure 2 
(b) and Figure 2 (c), which are based on 
truncated ranges of uncertainties, dismiss 
this wide possible variation of in-service 
aircraft and instead present a higher reso-
lution and more accurate clustering of the 
solution space in regions with high (that 
is, 1 to 6) in-service aircraft and low (that 
is, 0.4 to 2) in-service aircraft respectively. 
A high resolution and accurate clustering 
of the solution space and the inclusion of a 
wide diversity of variations can be achieved 
together if we consider the full uncertain-
ty space and also increase the number of 
samples (experiments) at the same time. 
However, this can come at the costs of 
adding to the computation burden of the 
process. This leads us to conclude that there 
is a need for a smart approach which can 
truncate the input uncertainty space effec-
tively; in a way that improves the resolution 
and accuracy of the output solution space 
while minimising the exclusion of relevant 
solution possibilities from this space. We 
introduce a heuristic to address this need in 
the next section.

To answer the first question posed 
in Introduction, the output solution 

space is sensitive to changes in the input 
uncertainty space as full and truncated 
areas of the input uncertainty create 
different (statistically significant) means 
and dispersion for the distribution of the 
output solution space. 

A HEURISTIC TO INFORM THE DELINEATION 
OF THE INPUT UNCERTAINTY SPACE

The previous section demonstrated the 
implications of sampling from the different 
areas of the input uncertainty space for the 
output solution space. This section presents 
a heuristic to inform the delineation of the 
uncertainty space. The idea behind this 
heuristic is that although exploratory mod-
elling can generate a wide solution space, 
not all solutions in this space are relevant 
for the context of study. These solutions are 
technically possible to be generated based 
on random samples from the input uncer-
tainty space. However, the solutions are not 
possible in reality or, even if they happen, 
they are not intended by decision-makers 
or are not relevant to the context. Stake-
holders, with their practical knowledge 
of the context, can help to identify these 
irrelevant parts of the solution space. We 
then sample only from those areas of the 
input uncertainty space which can generate 
the relevant parts of the solution space. We 
explain the steps taken in this heuristic, the 
generated results, and discussion as follows.

Process 
To answer the second question posed 

in Introduction, we suggest a heuristically 
informed data-mining process which mod-
ifies the input uncertainty space based on 
screening the output solution space in the 
following steps: 

 ■ Step 1: The process starts by projecting 
the clusters of similar parts of the out-
put solution space (in terms of selected 
model outcomes) in potential futures 
with a data-mining technique, called 
multi-dimensional clustering.  

 ■ Step 2: Stakeholders are asked about the 
desired/relevant parts of this solution 
space. This stakeholder opinion is used 
as a heuristic to limit the solution space.  

 ■ Step 3: A data-mining method, called 
scenario discovery, is used to identify 
which regions of the input uncertainty 
space are more likely to be responsible 
for the generation of the desired/
relevant parts of the solution space. 

Results and discussion 
To demonstrate the implementation 

of this process, we plotted the potential 
solution space (in terms of in-service 
aircraft and total costs) based on the full 
ranges of uncertainties in a scatter plot (see 
Figure 3). We assumed that the behaviour 
of experiments in Cluster 1, which are 
featured with higher in-service aircraft, 
is of more interest to decision-makers 
and relevance to the context compared to 
the other clusters. We, therefore, discard 
other clusters and only focus on sampling 
from the area of the input uncertainty 
space responsible for the generation of 
experiments in Cluster 1. To delineate this 
specific area of the uncertainty space, we 
applied scenario discovery.

The results of the scenario discovery 
show that the input uncertainty space 
would be more likely to result in Cluster 1 if 
the required flying hours and DM capacity 
available (from Table 1) are truncated to 
the specified ranges in Figure 3 while the 

Measure  
of merits Uncertainty Range P-value

Coverage: 0.28 Required flying hours 13 – 61 (hours/week) 7.0e–05

Density: 1.00 DM available capacity 4 – 6 (–) 4.6e–02

Last quartile 200 166.5347 0.832673

The truncated uncertainty ranges. For the rest of 
uncertainties in Table 1, the full ranges are considered.

Solution space Input uncertainty space

Cluster 1

Figure 3. The relationship between Cluster 1 in the solution space and the input uncertainty space
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ranges of the rest of uncertainties in Table 
1 remain the same. This truncated input 
uncertainty space improves the efficiency of 
the exploration process by avoiding having 
to sample from the areas of the input space 
insensitive to the desired solutions.

We show the implication of our heuristic 
approach for the exploratory modelling 
process with a multi-objective deci-
sion-making problem aiming to find the 
number of purchased aircraft, OM capacity 
and DM capacity, which could maximise 
in-service aircraft and minimise total costs. 
We generated Pareto optimal solutions with 
multi-objective robust optimisation under 
two conditions: the full input uncertainty 
space and the uncertainty space truncat-
ed according to the results of scenario 
discovery (in Figure 3). This resulted in two 
different sets of solutions in Figure 4. One 

reason for their difference is that solu-
tions under each condition are generated 
based on two series of random sampling 
and simulation runs. However, the more 
insightful reason of the difference lies in the 
different areas of the input uncertainty on 
which the generation solutions are based. 
The comparison of the Paretooptimal 
solutions in two conditions (see Figure 4) 
shows that running multi-objective robust 
optimisation under an informed-delineated 
input uncertainty space can result in more 
solutions with desired performance for 
decision-makers. The solutions in Figure 4 
(b) can deliver a better trade-off among the 
multiple decision objectives by delivering a 
higher in-service aircraft and not necessar-
ily resulting in a higher total cost compared 
to solutions in Figure 4 (a).

CONCLUSIONS
The delineation of an appropriate uncer-

tainty space in the exploratory modelling 
process is significant as it needs to capture a 
picture of model behaviours that is as wide 
as possible bit does not incur a high com-
putational cost. This led us to think about 
the ways that we can effectively adjust the 
delineation of the input uncertainty space 
based on a feedback control from output 
solutions. We argued that stakeholders can 
screen the solution space and identify the 
desired behaviour of the model. A feedback 
control, then, can identify which area of 
the input uncertainty space is responsible 
for the generation of the desired model 
behaviour and can inform the adjustment 
of input uncertainty space accordingly.

The feedback control that we suggested 
in this article is based on data mining 
and statistical analyses of both input 
uncertainties and output solutions. 
However, this is not the only way to design 
such feedback control. An alternative 
approach would be to develop a simple form 
of control model which can relate outputs 
to inputs. This control model is much 
simpler than the original simulation model 
which generated the outputs from inputs 
in the first place. Therefore, the control 
model can be run very quickly to inform 
the delineation of the input uncertainty 
space as the desired model behaviour is 
identified in the solution space. Although 
this control model would not be accurate 
in explaining the precise input-output 
relationship because of its simple structure, 
the accuracy of the control model can be 
improved by training the model with many 
ensembles of inputs and outputs. We suggest 
the development of this control model in 
the exploratory modelling process and its 
comparison with our suggested control data 
mining and statistical analyses as a future 
research direction.  

Figure 4. Pareto optimal solutions based on sampling from (a) the full input 
uncertainty space and (b) the truncated uncertainty space

(a)

(b)
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Table A.1. The first quartile of uncertainty ranges

Uncertain parameter Range 

The risk that an aircraft is lost during operation 0.00026 – 0.00078 (–) 

Lifetime of aircraft 37440 – 112252.5 (hour) 

Total required flying hours 12 – 59 (hour/week) 

Expected time spent by an aircraft in CAP 8 – 17.25 (week)

Time between CAP events 16 – 22 (week)

Expected time spent by an aircraft in DM (Time in DM) 5 – 10 (week) 

Time (flying hours) between DM events 200 – 600 (hour)

Expected time spent by an aircraft in OM (Time in OM) 3 – 6 (week)

Time between OM events 50 – 150 (hour)

Uncertain parameter Range 

The risk that an aircraft is lost during operation 0.00182 – 0.00234 (–) 

Lifetime of aircraft 261877.5 – 336690 (hr)

Total required flying hours 153 – 200 (hour/week) 

Expected time spent by an aircraft in CAP 35.75 – 45 (week)

Time between CAP events 34 – 40 (week)

Expected time spent by an aircraft in DM (Time in DM) 20 – 25 (week) 

Time (flying hours) between DM events 1400 – 1800 (hour)

Expected time spent by an aircraft in OM (Time in OM) 12 – 15 (week)

Time between OM events 350 – 450 (hour)

Table A.2. The fourth quartile of uncertainty ranges
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INTRODUCTION

 ABSTRACT
Although theoretically independent, requirements within a decomposition level of a system architecture are not isolated elements. 
For an existing design, a change of a requirement may endanger or facilitate fulfillment of other requirements within the same level 
of the decomposition. The present research suggests a requirement connectivity metric to evaluate the potential consequences that 
changing a requirement may have on a system with respect to fulfillment of other requirements. A particular aspect of the present 
research is the assumption that connectivity accounts only for requirements within the same decomposition level of an architec-
ture, not for those flowing up or down the decomposition. The metric is used to evaluate different cases in which requirements are 
changed due to triggering of uncertain events during a project life cycle.

Assessing the Impacts of 
Uncertainty Propagation 
to System Requirements 
by Evaluating Requirement 
Connectivity

Alejandro Salado and Roshanak Nilchiani
Copyright © 2013 by Alejandro Salado and Roshanak Nilchiani.  Published and used by INCOSE with permission.

It is widely recognized that various 
types of change during a development 
process often negatively affect cost, 
schedule, and quality. Consequent-

ly, the study of how change propagates 
along the elements composing a system 
that is under development is becoming an 
important topic of research in different 
engineering disciplines and industries. For 
example, (Hassan and Holt 2004) address 
the importance of predicting change in 
software systems and provide some heuris-
tics for its management. Heuristics are also 
proposed in the field of product develop-
ment (Keller, Eckert, and Clarkson 2006), 
where the majority of research has focused 
attention to the impacts on physical com-
ponents derived from changes on other 
physical components. Clarkson, Simons, 
and Eckert (2001) and Oduncuoglu and 
Thomson (2011) include risk as a measure 

on the prediction of change propagation of 
product development. In research span-
ning several years and over 41,500 change 
requests in a number of industry cases 
(Giffin et al. 2009) provide some metrics to 
quantitatively evaluate the effect of change 
propagation and find out that the majority 
of change requests occur during system 
integration and test.

Changes can however occur or be a 
result of changes in elements or artifacts 
surrounding the system under devel-
opment, apart from the elements of the 
system under study. Koh and Clarkson 
(2009) explore this idea and incorporate 
other elements in the evaluation of change 
propagation during product development, 
namely design features and requirements 
(which in systems engineering jargon can 
be interpreted as stakeholder requirements 
and system requirements). However, the 

authors do not address interdependencies 
between stakeholder requirements, but only 
between these and system requirements. 
Bonjour et al. (2010) provide a new hind-
sight to the state of the art and address the 
effects project organizational aspects have 
on change propagation.

In the development of complex systems, 
considerable number of changes are the re-
sult of requirement changes. Peteerson et al. 
(2007) discuss the effects that requirement 
changes have in projects and propose some 
guidelines to deal with such uncertainty in 
multidisciplinary innovation products. Bi-
schof and Blessing (2007) explore the same 
path to discover how to design products 
for flexibility so that they can seamlessly 
absorb such changes and argue that the 
more frequent requirements change, the 
more decisions in shorter time need to 
be taken. Consequently, the uncertainty 
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of taking good decisions increases, which 
could thus result in not meeting customer 
expectations and having to redesign the 
product. Such a concern is also addressed 
by Sudin and Ahmed-Kristensen (2011), 
who investigate how requirement change 
occurs in the context of a design process. 
Eben and Lidemann (2010) use the findings 
of change propagation in product devel-
opment to evaluate change propagation in 
requirements and recognize interdepen-
dencies exist among requirements within a 
decomposition level.

Hull, Jackson, and Dick (2005) state that 
“a simple textual statement is not sufficient 
fully to define a requirement; there is other 
classification and status information that 
each requirement carries.” They propose 
that such information should be attached 
to requirements as attributes and pro-
vide a comprehensive list of 34 attributes 
organized in 9 categories, which are in 
part, taken from the work carried out by 
the requirements working group in the UK 
chapter of INCOSE. One of such attributes 
is priority, which by itself may represent 
also multiple objectives. Firesmith (2004) 
justifies the importance of prioritizing 
requirements and shows the broadness of 
meaning it can convey by collecting types 
of priorities that are used or have been used 
within industry and academia: stakeholder 
preferences, value to business, cost, harm 
avoidance, difficulty to implement, and 
connectivity, among others. Carlshamere 
et al. (2001) address the importance of 
managing requirement dependencies as an 
enabler to establish effective prioritization 
techniques. Kulshreshtha, Boardman, and 
Verma (2012) identify the same problem-
atic when analyzing prioritization based 
on pair-wise comparisons as proposed 
by Karlsson (1996), Mead (2006), and 
Berander and Andrews (2005).

Connectivity is defined in the present 
research as the number of requirements 
within a decomposition level of a system 
and for a single element in the decomposi-

tion level to which a particular requirement 
has a relation (Figure 1). Consequently, it 
indicates how many requirements with-
in a decomposition level may see their 
fulfillment affected due to a change on a 
particular requirement. In essence, connec-
tivity in the present research measures the 
potential harm or effect that a requirement 
change may have on the fulfillment of other 
requirements by the system.

The present research contributes to the 
field of change propagation by incorporat-
ing uncertainty as the driver for connectiv-
ity evaluation (thus pro-actively contrib-
utes to design against change versus the 
reactive approach to changes), proposing a 
connectivity metric based on the influence 
impact of a requirement, and incorporating 
structural definitions to links and nodes 
concurrently.

The present paper is organized as follows. 
First a literature survey is presented on the 
topic of requirement connectivity. Then a 
case study and the connectivity metrics that 
are used in the research are presented. The 
paper then continues with the evaluation of 
10 cases for which the impact of triggered 
uncertain events on requirements show-
cases the use of requirement connectivity. 
Finally, a short summary of the conclusions 
and a proposal for future work are given.

LITERATURE REVIEW
The issue of interdependencies between 

requirements has been a topic of inter-
est in recent years in industry as well as 
academia. Kulshreshtha, Boardman, and 
Verma (2012) provide a comprehensive lit-
erature review on the different propositions 
for defining dependencies among require-
ments, which is summarized hereafter.

Carlshamere et al. (2001) in research 
using industrial data, define the following 
six categories of requirement dependence, 
although they recognize that not all rela-
tionships they found could be categorized 
with it:

 ■ AND: indicates a bidirectional 
dependency in which one or more 
requirements need the other ones to be 
fulfilled.

 ■ REQUIRES: indicates a unidirectional 
dependency in which one requirement 
needs another one to be fulfilled.

 ■ TEMPORAL: indicates a requirement 
needs another one to be fulfilled before 
it can be fulfilled itself.

 ■ CVALUE: fulfillment of a requirement 
affects fulfillment of a cost requirement.

 ■ ICOST: fulfillment of a requirement af-
fects fulfillment of a time requirement.

 ■ OR: a requirement does not need to be 
fulfilled if another one is fulfilled.

Pohl (1996) uses traceability to propose 
18 types of dependencies classified in 5 
categories (the names are self-explanatory):

 ■ Condition: Constraints, Pre-conditions. 
 ■ Content: Similar, Compares, Contra-
dicts, Conflict. 

 ■ Documents: Example for, Test_case for, 
Purpose, Background, Comments. 

 ■ Evolutionary: Elaborates, Formalizes, 
Based_on, Satisfies, Replaces.

 ■ Abstraction: Refines, Generalizes.

Zhan, Mei, and Zhao (2005) take a 
different approach and focus on dependen-
cies of features, grounded in the hypothesis 
that features are the outcomes of subsets of 
requirements and in the fact that previous 
classifications did not address requirements 
dependencies in the solution space. They 
propose the classification shown in Table 1.

Robinson, Pawloaski, and Volkov (1999) 

Level 0

Level 2

Level 1
Connectivity
measured on

requirements inside
this box

Figure 1. Definition contest for connectivity in the present research

Table 1. Requirement dependency taxonomy (Zhan, Mei, and Zhao 2005)

Type Description 

Static
Decomposition
Generalisation
Required or excluded

Feature flow relations (originating and derivation).
Higher level feature identified from a lower level one.
Unidirectional dependence or exclusion.

Dynamic
Serial
Collateral
Synergetic
Change

Pre-condition.
Simultaneous bi-directional dependency.
Serial bi-directional dependency.
Change in a feature affects another one
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propose 9 types of dependencies which aim 
at supporting interaction management in 
conflicting situations:

 ■ Positive correlation: increasing the ful-
fillment of a requirement increases the 
fulfillment of another requirement.

 ■ Negative correlation: increasing the ful-
fillment of a requirement decreases the 
fulfillment of another requirement.

 ■ Unspecified correlation: a change in 
the fulfillment of a requirement has an 
unidentified effect on another require-
ment.

 ■ No correlation: change in the fulfillment 
of a requirement does not impact the 
fulfillment of another requirement.

 ■ Structure: requirements are similar.
 ■ Resource: requirements depend on the 
same resource.

 ■ Task: a requirement describes a depen-
dent task of another requirement.

 ■ Causality: a requirement is a conse-
quence of another requirement.

Table 2. Example requirements

ID Requirement 

Req1 The system shall image the Earth surface in 4 spectral channels 
simultaneously.

Req2 The system shall image the Earth surface without obscuration 
between consecutive images.

Req3 The system shall provide image data at a maximum rate of 20 Mbps.

Req4 The system shall self-command and control.

Req5 The system shall have a performance (MTF, resolution or similar) 
better than 5 units.

Req6 The system shall have a SSD lower than 2 nm.

Req7 The system shall have a power consumption lower than 200 W.

Req8 The system shall operate at 650 km altitude and 70° inclination.

Req9 The system shall have a mass lower than 950 kg.

Req10 The system shall fit inside an envelope of 1 m.

Table 3. Example requirement dependencies

Connection Rationale 

Req1-Req3 (n) The number of channels to be imaged influences the amount of data generated and therefore 
the data rate required to transfer all data.

Req1-Req5 (c) Performance requirement related to the function. Therefore, its existence is only sensible if the 
function has to be implemented.

Req1-Req6 (c) Performance requirement related to the function. Therefore, its existence is only sensible if the 
function has to be implemented.

Req1-Req7 (r) The function requires power to operate.

Req2-Req3 (n) Obscuration drives the number of images to be taken per second, which influences the amount 
of data generated and therefore the data rate required to transfer all data.

Req2-Req7 (r) The function requires power to operate.

Req2-Req8
(p) (n) The satellite orbit speed depends on its altitude. Varying orbit speed results in different sizes 
of image taking, influencing therefore obscuration. For higher orbits effect is positive whereas for 
lower orbits effect is negative.

Req3-Req5 (n) Higher resolution requires higher data rates.

Req3-Req7 (p) Lower data rates require lower power to function and vice versa.

Req4-Req7 (r) The function requires power to operate.

Req4-Req9 (r) The function requires mass for its implementation.

Req4-Req10 (r) The function requires physical size for its implementation.

Req5-Req8 (p) (n) Optical performance is related to the distance to the focus, which is derived from the orbit 
altitude.

Req5-Req9 (r) Optical performance depends on size and mass of optical elements, as well as in thermo-
mechanical properties such as stiffness, which influence the required mass.

Req5-Req10 (r) Optical performance depends on size of the optical elements.

Req8-Req9 (p) (n) Orbit altitude determines space environment, which influences the mass required for 
example for protection.

Req8-Req10 (p) (n) Orbit altitude determines space environment, which influences the size required for example 
for protection.
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 ■ Temporal: requirements are temporally 
related.

Kulshreshtha, Boardman, and Verma 
(2012) synthesize their findings in litera-
ture by enclosing all proposed dependence 
relations in 7 types:

 ■ Requires: indicates a unidirectional 
dependency in which one requirement 
needs another one to be fulfilled.

 ■ Requires (loop): indicates a bidirection-
al dependency in which one or more 
requirements need the other ones to be 
fulfilled.

 ■ Implementation sequence: indicates a 
requirement needs another one to be 
fulfilled before it can be fulfilled itself.

 ■ Value/cost: fulfillment of a requirement 
affects the value of another requirement.

 ■ Derive: a requirement is derived from 
another requirement.

 ■ Structure: requirements are similar.
 ■ Conflict: requirements cannot be 
implemented together.

However, Kulshreshtha, Boardman, and 
Verma (2012) identify a need to provide 
a classification or mechanism that is able 
to determine and represent dependencies 
among different levels of the requirement 
partitioning. In particular the authors come 
up with five categories:

 ■ Contractual: transfer of data, which 
is equivalent to Requires and Requires 
(loop).

 ■ Continuance: continuation of flow of 
activities in sequence, passing message 
without transfer of data to help process 
flow.

 ■ Compliance: implementation in com-
pliance with a law/policy/rule of the 
company, government, or industry, 
which is equivalent to Requires.

 ■ Cooperation: objective of a dependent 
non-functional requirement to be 
achieved by other requirements, which 
is equivalent to Requires.

 ■ Consequential: change in modifier 
forcing change in other requirements, 
which is equivalent to Value/Cost. 

Eben and Lindemann (2010) provide 
a different perspective on connectivity of 
requirements and focus on classifying the 
nodes and groups of nodes instead of their 
links. They propose 9 criteria to classify the 
single nodes and 7 criteria to classify the 
subsets of nodes, based on the amount and 
effect of their links on other nodes.

Representation of connectivity for 
evaluating change propagation has also 
been addressed by the research community. 
Keller et al. (2005) evaluate four techniques 
for visualizing change propagation through 
product components:

 ■ Design Structure Matrix (DSM): 
dependencies are represented in a 
matrix form, easing the direct linkage 
between different components, but 
its binary information provides little 
information on how the changes 
actually propagate.

 ■ Change Risk Plot: based on the DSM 
concept binary information is substi-
tuted by risk information, providing a 
visual perception of the critical areas.

 ■ Propagation Networks: dependencies 
are represented in a network form, 
being each component a hub or element 
on the network and the particular 
dependency a link. Links can be of 
different types. The graphical represen-
tation allows for making appropriate 
layout clustering zones according to 
their criticality.

 ■ Propagation Tree: based on the 
Propagation Networks, the propagation 
tree repeats nodes for different types of 
links, i.e. each pair of nodes can only 
have one link. Although for a higher 
number of components the diagram gets 
more complex it provides a better visual 
representation of change propagation.

All the proposed methods can be easily 
transferred to evaluate propagation of 
requirements change, being then the 
requirements treated as components 
(nodes) and their dependencies as links.  

CASE STUDY
Definitions and assumptions 

Requirement connectivity is represented 
by a network of interconnected hubs, in 
which each hub represents a requirement. 
Each connection in the network represents 
a dependency between the hubs (require-
ments). Elements without any connection 
indicate orthogonal requirements, i.e., 
independence of requirements. Because 
connectivity is going to be used to eval-
uate conflict related to change types of 
connection (dependencies) are defined 
according to the classification proposed by 
Robinson, Pawloaski, and Volkov (1999), 
which has been shortly presented earlier. 
The following nomenclature is used: p (pos-
itive correlation), n (negative correlation), r 
(resource), c (causality).

Let’s consider a space instrument with 
requirements as listed in Table 2. Its 
mission is to take images of the Earth in 
several spectral bands without obscuration 
between different data takes.

The dependency network is assessed by 
analyzing the dependency of each require-
ment with every other requirement. Depen-
dencies in Table 3 have been determined.

For visualization purposes the Prop-
agation Network is used in this paper to 
represent the dependencies between the 
requirements of the case study.

Values next to each hub (requirement) 
represent their level of connectivity, that is, 
how many requirements have a relation to 

Table 4. Uncertainties affecting requirements during design phase for a space system

Uncertainty Rationale or Example

Market size New estimations on market size may result in adaptation 
of requirements.

Competitor Introduction of competitors in the market may result in 
adaptation of requirements to be more competitive.

Schedule The longer it takes to develop a system, the more 
probable stakeholders may change requirements.

Cost Variation in cost may lead to modify (upgrade or waive) 
requirements.

Technical 
capability

Technical capability of the manufacturer may lead to 
modify (upgrade or waive) requirements.

Customer 
involvement

The more the customer is involved the more probable 
requirements will evolve.

Export Export regulations may result in updating requirements.

Frequency 
allocation

Export regulations or frequency restrictions may result 
in updating requirements.

Mission-specific 
regulations

Mission-specific regulations may evolve and result in 
updating requirements.

Disposal Evolution of disposal regulations may result in updating 
requirements.
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that one. It shall be noted that connectivity accounts only those 
links that make an influence. For example, causal relation is only 
counted in one direction, as the effect requirement has not impact 
on the cause one. This is shown by the arrowed links. In addition, 
the reader shall bear in mind that connectivity in requirements 
represents effect on the fulfillment of a requirement and not on 
the implementation of the component to which the requirement 
is allocated.

The resulting values can then be used as a prioritization factor 
for decision-making. In essence connectivity indicates how many 
requirements may be affected when one of them faces change.

Application
Salado, Nilchiani, and Efatmaneshnikh 2012 identify and cat-

egorize major uncertainties that may affect requirements during 
the design phase of a space system once a triggering event occurs, 
which are listed in Table 4.

In the following the connectivity diagram presented in Figure 2 
is used to assess how requirements are affected when uncertain 

namely lower data rate (Req. 3), lower available power (Req. 7), 
and lower mass capability (Req. 9). The effect of each requirement 
change in the rest of the requirements is shown in Figure 3.

Power availability (Req. 7) constraints the amount of functions 
that can operate simultaneously (Req. 1, Req. 2 and Req. 4) and 
in some cases may limit performance (Req. 3). In optical instru-
ments mass restrictions (Req. 10) constraint the size of optical 
elements, which influences optical performance (Req. 5). The 
dependency analysis shows that change in resources conditions 
fulfillment of functionality and performance. A joint connectivity 
of the resource requirements of 9 affects 5 requirements through 
9 channels.

Case 2 – Competitor. During the course of system devel-
opment a competitor has put into service a space system at the 
same resolution the instrument is being developed to. Therefore 
investors decide to upgrade the design and increase the required 
resolution (Req. 5). The effect of modifying such requirement is 
shown in Figure 4.

events occur. Several cases are studied, one per each defined 
uncertainty.

Due to the scope of the system under study, a space-based Earth 
observation instrument, the following uncertainties are consid-
ered not applicable, as they influence other parts of the system or 
the higher level system, but not the instrument itself: frequency 
allocation (the instrument is not in charge of communicating to 
Earth or an external system), mission-specific regulations (they 
usually have to do with the Concept of Operations of the higher 
level system), and disposal (managed by Concept of Operations 
and affecting the platform, not the instrument).

Note on color code for the network diagrams that follow: 
requirements marked in red are the ones changing. Requirements 
marked in yellow are the ones being affected. Red lines and arrows 
represent probable negative impacts (more stringent require-
ment). Green lines and arrows represent additional margin to 
fulfill a requirement.

Case 1 – Market size. New estimations of the market size show 
a less optimistic prediction than initially planned. As a result, 
investors decide to change the satellite platform in order to reduce 
upfront investment. It results in lower resources for the instrument, 

Figure 2. Visual representation of requirement dependencies 
including effects of causal relations
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Figure 3. Uncertain triggering event on requirements for Case 1
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Figure 4. Uncertain triggering event on requirements for Case 2



SP
ECIA

L 
FEA

TU
R

E
D

ECEM
B

ER
  2O

24
VOLUM

E 27/ ISSUE 6

44

Fulfillment of more stringent optical requirements (Req. 5) 
may require bigger and heavier components. Therefore mass 
(Req. 9) and envelop (Req. 10) requirements may not be fulfilled. 
The dependency analysis shows that change in performance 
conditions fulfillment of resources.

A connectivity of 3 affects 3 requirements through 3 channels.

Case 3 – Schedule. During the course of system development 
scientists have come up with a new processing algorithm that 
brings different benefits to the analysis of Earth images. This 
algorithm requires satellites to take overlapping images during 
passes. In order to take benefit from this use investors have 
decided to change the obscuration requirement (Req. 2) and 
instead require the instrument to take consecutive images 

required SSD (Req. 6). As a consequence they issue a Request For 
Deviation (RFD) to the customer, which is approved. The effect of 
modifying such requirement is shown in Figure 7.

Since SSD is associated to the physical properties of a material, 
its fulfillment does not have any impact on other requirements. A 
connectivity of 0 does not affect any requirement.

Case 6 – Customer involvement. In this particular project 
customer is significantly involved in all levels of the system 
development. After reviewing the operational concept of the 
instrument and evaluating test results of some lower level 
components, customer has decided to add a new requirement 
in order to acquire health status data of the instrument for 
post-processing when operational. The following requirement is 
added: Req. 11. The system shall provide the housekeeping data 
according to REF1. The effect of adding such requirement is shown 
in Figure 8.

Adding housekeeping functionality to the system (Req. 11) may 
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Figure 5. Uncertain triggering event on requirements for Case 3

ensuring at least 60% overlap. The effect of modifying such 
requirement is shown in Figure 5.

Increasing amount of images per second (Req. 2) may require 
higher power (Req. 7). Since significantly more data are produced, 
fulfillment of maximum data rate (Req. 3) is put into question. 
The dependency analysis shows that change in functionality con-
ditions fulfillment of performance and resources. A connectivity 
of 2 affects 2 requirements through 2 channels.

Case 4 – Cost. Due to severe cost overrun during development 
of the instrument system the principal contractor has decided 
to move command and control capabilities (Req. 4) back to 
the satellite platform in order to limit equipment investment at 
instrument side (at the risk of having a more complex verification 
and validation). The effect of modifying such requirement is 
shown in Figure 6.

Removing functionality from the system (Req. 4) may result 
in removing system components, which frees the availability 
of  power, mass and volume (Req. 7, Req. 9, and Req. 10). 
The dependency analysis shows that change in functionality 
conditions fulfillment of resources. A connectivity of 3 affects 3 
requirements through 3 channels.

Case 5 – Technical capability. During instrument develop-
ment the instrument manufacturer realizes it cannot achieve the 
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Figure 6. Uncertain triggering event on requirements for Case 4

Figure 7. Uncertain triggering event on requirements for Case 5
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require additional power (Req. 7). Since 
additional data are generated, fulfillment 
of data rates may be questionable (Req. 3). 
The dependency analysis shows that change 
in functionality conditions fulfillment of 
resources and performance. A connectiv-
ity of 2 affects 2 requirements through 2 
channels.

Case 7 – Export. During instrument 
development USA export control regu-
lations changed, impacting the legality 
to use the pre-selected launcher. In order 
to avoid incrementing the complexity of 
in-orbit maneuvers investors have decided 
to use a different orbit to park their satellite 
(Req. 8). The effect of modifying such 
requirement is shown in Figure 9.

Changing the orbit in which the 
instrument operates (Req. 8) directly 
influences optical performance (Req. 5), 
as the optical focus of the system changes. 
In addition, the different orbit position 
may risk the fulfillment of the obscuration 
requirement (Req. 2), as system may be 
unable to record images at certain rate. 
Furthermore, a different orbit may present 
different radiation environment, resulting 
in the need of additional mass and size 
(Req. 9 and Req. 10) to incorporate the 
appropriate level of radiation hardening. 
The dependency analysis shows that change 
in interaction conditions fulfillment of 
functionality, performance, and resources.

A connectivity of 4 affects 4 requirements 
through 4 channels.

Summary of results
The results of the different cases are 

summarized in Table 5.

Figure 9. Uncertain triggering event on requirements for Case 7Figure 8. Uncertain triggering event on requirements for Case 6
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Table 5. Evaluation case analyses

Case Causal 
requirement type

Dependency 
impacts

Affected requirement 
type

C R Ch F P R I

1 Resource 9 5 9 X X

2 Performance 3 3 3 X

3 Function 2 2 2 X X

4 Function 3 3 3 X

5 Performance 0 0 0

6 Function 2 2 2 X X

7 Interaction 4 4 4 X X X

* The following definitions are used in the table:
• C: connectivity of the causal requirement. • Ch: number of affecting channels.
• R: number of affected requirements. • F: functionality; P: performance; R: resources;  

   I: interaction.

CONCLUSIONS
The present research shows that re-

quirement connectivity can be effectively 
used to assess the impacts of uncertain 
events on system requirements during the 
entire life-cycle of a project. The impact 
of requirement changes can be illustrated 
with help of the presented approach; it thus 
facilitates impact analysis. The following 
patterns and conclusions can be recognized 
in the case-study described in the paper:

 ■ Connectivity of a causal requirement 
is related to the amount of affecting 
channels.

 ■ Number of affected requirements is 
lower or equal to the connectivity of a 
requirement.

 ■ Apparently, there is certain correlation 
between the type of the causal re-
quirement and the type of the affected 
requirements. 

 ■ There is no apparent correlation be-
tween the type of uncertainty and the 
amount of affected requirements.

The present research has set the basis for 
future research that would overcome the 
limitations of the results presented in this 
paper:

 ■ Apply the proposed connectivity de-
termination method to higher amount 
of requirements to improve pattern 
recognition and include interaction 
requirements.
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 ■ Apply the proposed connectivity determination method to 
higher amount of cases to improve pattern recognition.

 ■ Incorporate structural definitions into pattern recognition.
 ■ Incorporate advances on network theory to develop efficient 
computation algorithms.

 ■ Formally complete the model with mathematical representa-
tions, metrics, and definitions.

 ■ Develop techniques to ensure completeness of the dependency 
identification activity. 
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INTRODUCTION

 ABSTRACT
Currently, technology readiness assessments (TRAs) are used in determining the maturity of the critical technology elements 
(CTEs) of a system as it moves forward in the system development life cycle. The TRA method uses technology readiness levels 
(TRLs) as the decision metric. TRL values are assessed and determined by subject matter experts (SMEs). Since expert evaluators 
often differ in their judgment when scoring a system element against the TRL scale criteria, this paper argues for the use of a 
Bayesian network model to provide a mathematical method to consistently combine and validate the judgment of these SMEs and 
increase the confidence in the determination of the readiness of system components and their technologies.

Applying Bayesian 
Networks to TRL 
Assessments – Innovation 
in Systems Engineering

Marc F. Austin, Virginia Ahalt, Erin Doolittle, Cheyne Homberger, George A. Polacek, and Donal M. York
Copyright © 2017 by Marc F. Austin, Virginia Ahalt, Erin Doolittle, Cheyne Homberger, George A. Polacek, and Donald M. York. 
Published and used by INCOSE with permission.

Bayesian probability provides 
a framework for building and 
refining models which incorporate 
uncertainty. A Bayesian network, 

or Bayes net, is a graphical representation 
of a multi-dimensional probability dis-
tribution, in which a variety of indicators 
may be dependent on a complex network 
of observable and hidden variables. Bayes 
nets are well suited for translating complex 
relationships of dependencies into intuitive 
and mathematical models and perform well 
even in the face of missing or inconsistent 
data.

In this case, our challenge is the deci-
sion-making process that assigns tech-
nology readiness level (TRL) values to 
system technologies or critical technology 
elements (CTEs) in the DoD’s technology 
readiness assessment (TRA) process. In 
performing a TRA, assessors consider a 
variety of different and often subjective 
attributes of a system in order to make a 
final determination, which is as consistent 

as possible. The Bayes net effectively mod-
els this situation: it is able to incorporate 

a set of complex, possibly incomplete, and 
highly interrelated attributes and, through 

High 90.0
Low 10.0

Yes 50.0
No 50.0

High 57.0
Low 43.0

Good 46.4
Poor 53.6

Below average 10.0
Average 70.0
Above average 20.0

High  21.4
Medium 20.8
Low  57.8

Good  53.3
Damaged 38.4
Dead  8.3

“Leaf nodes”: We
enter a “finding’
(select an option)

“Intermediate” nodes:
Results from leaf nodes
update probabilities of
intermediate categories 

“Target” node: Selections from leaf nodes and
underlying probabilities generate a final probability
of each level; tool for answering the overall question 

Drought ConditionsPesticide Use

Pesticide in river River Flow Tree Condition

Annual Rainfall

Native Fish Abundance

75.9±64

Figure 1. An example Bayesian belief network – predicting native fish abundance 
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the laws of probability, produce a consistent 
and mathematically rigorous recommen-
dation. The model is constructed through 
gathering evidence and eliciting expert 
opinion, which are all incorporated, along 
with any uncertainty, in the final product. 
Each individual indicator is represented as 
a node in the network, with links represent-
ing dependencies between the nodes. Bayes 
theorem governs the relationships between 
the connected nodes. Figure 1 illustrates an 
example Bayesian belief network.

WHY USE BAYESIAN NETWORKS FOR TRLS?
The Bayes net provides an effective 

framework for testing the most likely 
outcome of future events or scenarios and 
finding their likely cause(s). It combines 
both subjective expert opinions with 
available quantitative information/data 
providing informed decision-making 
without requiring complete knowledge of 
the problem. The problem domain experts 
take ownership because their input is vital. 
As new knowledge is acquired, the modular 
design of the Bayes net easily accommo-
dates additional information.

The TRL is a systematic metric/measure-
ment to assess the maturity of a particular 
technology and to allow consistent compar-
isons of maturity between different types 
of technologies. The TRL was initially pio-

neered by J. C. Mankins [6] at the National 
Aeronautics and Space Administration 
(NASA) Goddard Space Flight Center in 
the 1980s as a method to assess the read-
iness and risk of space technology. Over 
time, NASA continued to use readiness 
levels as part of an overall risk assessment 
process and as a means for comparison of 
maturity between various technologies. 
NASA incorporated the TRL methodology 
into the NASA Management Instruction 
7100 as a systematic approach to the 
technology planning process. The DoD, 
along with several other organizations, 
later adopted this metric and tailored its 
definitions to meet their needs. TRL values 
range from 1 to 9. A definition, description, 
and decision criteria for TRL values 5, 6, 
and 7 are provided in Table 1. The technol-
ogy readiness assessment (TRA) method 
uses TRLs and is a Department of Defense 
(DoD) directive performed across the DoD 
[7]. A TRL of 6 is a particularly critical 
milestone in the US DoD systems develop-
ment life cycle as it is required to enter full 
scale development.

In the technology readiness assessment, 
critical technology elements or CTEs are 
selected from among the elements/com-
ponents of the development system. The 
TRL of each of these CTEs is assessed by 
subject matter experts (SMEs). Although 

scoring a technology in conjunction with 
the 1 to 9 TRL scale is based on satisfying 
certain requirements and providing the 
accompanying evidence, expert evaluators 
may often differ in their judgment. Use 
of the Bayesian network and its resulting 
probability distributions help to validate 
and establish a level of confidence in the 
judgment of these experts. The TRL Bayes-
ian network model yields a distribution of 
TRL values and therefore represents or is 
suitable for analyzing a variety of scenarios. 
A range of TRL values rather than a single 
number provides the analyst with a level 
of confidence and a better perspective of 
where the risk lies.

CONSTRUCTING THE BAYESIAN NETWORK 
Figure 2 illustrates the process steps 

followed in constructing the TRL Bayesian 
network. The question of interest is “What 
is the technology readiness level of the tech-
nology element?” First, identify everything 
that contributes to determining a TRL, 
i.e., the set of variables or nodes. Is there a 
natural ordering of these nodes? Can the 
nodes be treated as having binary states? 
Next, what is the dependency structure? 
Ascertain how to preserve an acyclic re-
quirement and how to significantly reduce 
complexity. Finally, what is the conditional 
probability table (CPT) for each node? 

Table 1. Decision criteria for assessing technology readiness level (TRL1)

TRL Definition Description Supporting Information

5 

Component and/
or breadboard 
validation in 
a relevant 
environment. 

Fidelity of breadboard technology 
increases significantly. The 
basic technological components 
are integrated with reasonably 
realistic supporting elements to 
they can be tested in a simulated 
environment. Examples include 
“high-fidelity”laboratory integration 
of components.

Results from testing laboratory breadboard 
system are integrated with other supporting 
elements in a simulated operational 
environment.
 How does the “relevant environment” differ 
from the expected operational environment? How 
do the test results compare with expectations? 
What problems, if any, were encountered? Was 
the breadboard system refined to more nearly 
match the expected system goals?

6 System/subsystem 
model or prototype 
demonstration 
in a relevant 
environment. 

Representative model or prototype 
system, which is well beyond that 
of TRL 5, is tested in a relevant 
environment. 
 Represents a major step up 
in a technology’s demonstrated 
readiness. Examples include testing 
a prototype in a high-fidelity 
laboratory environment or in a 
simulated operational environment. 

Results from laboratory testing of a prototype 
system that is near the desired configuration 
in terms of performance, weight, and volume. 
How did the test environment differ from the 
operational environment? Who performed 
the tests? How did the test compare with 
expectations? What problems, if any, were 
encountered? What are/were the plans, options, 
or actions to resolve problems before moving to 
the next level? 

7 System prototype 
demonstration 
in an operational 
environment. 

Prototype near or at planned 
operational system. Represents 
a major step up from TRL 6 by 
requiring demonstration of an 
actual system prototype in an 
operational environment (e.g., in an 
aircraft, in a vehicle, or in space). 

Results from testing a prototype system in 
an operational environment. Who performed 
the tests? How did the test compare with 
expectations? What problems, if any, were 
encountered? What are/were the plans, options, 
or actions to resolve problems before moving to 
the next level? 

1. Developed by NASA and recommended by the Defense Acquisition Guidebook.
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There are certain requirements for a 
good variable. The values (or states) must 
be mutually exclusive. In other words, two 
or more states cannot be true at any single 
time. Also, states in a variable must be 
collectively exhaustive. One of the states 
must be true. Lastly, states must be unam-
biguously defined. Ambiguous states, such 
as other, should be avoided. Use a clarity 
test for each variable. Clarity means that a 
person looking at the variable knows with-
out interpretation or assumption what the 
variable means and what its value is.

Figure 3 shows the complete set of TRL 
care-abouts or variables that are eventually 
reduced to the leaf nodes in the model. 
These variables resulted from a series of 
brainstorming meetings of the SMEs to list 
everything they thought contributed to or 
might potentially impact the decision-mak-
ing process determining a TRL. While the 
conventional TRL tables define the TRL at 
each level, the purpose of the care-abouts 
is to capture a much more comprehensive 
and detailed set of attributes considered by 
the SME in their decision-making process. 
Along the way, numerous variables were 
combined, deduped or determined not 
to influence the TRL decision and were 

Determine the “care-abouts”

These are the variables/states 
or leaf nnodes

Everything that contributes to 
a TRL determination

Determines the nodes of the 
Bayes net

Define levels (states) of each node

States must be mutually 
exclusive

States in a node must be 
collectively exhaustive States must be clearly defined

Determine initial categories

Group variables to determine initial categories These are the intermediate nodes

Determine underlying probabilities

Conditionnal Probability Table (CPT) for each 
node

Can be developed as a compilation of multiple 
opinions or decided as a group

Develop model structure

Which intermediate categories depend on which leaf nodes

Figure 2. Constructing a Bayesian Network
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in which environment
(code, unit test, lab,
operational, real)

Evaluation Point
(milestone, FOC, etc.)

Development testing
is complete

Sustainability

Level of investment/
ownership

Prior art provides
doesn’t provide proof

What research needs
to be done yet?

Already identified
TRL

Scale of the tech

Maintainability

Availability

How good is good
enough?

Proven (in mission
environment)

What level of
development has
beendone to date?

Reliability (High, 
Medium, Low

Documentation

PoliticsDemonstration

SW vs. HW

SW/HW/Firmware

Independent view,
bias in testing

Source/confidence
in “proof”

Hard science-based
evidence

Scope/boundary of
program being
investigated

Requirements set,
stable/complete or
unstable/incomplete

Figure 3. The initial set of variables or care-abouts from the TRL brainstorming meetings
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eliminated. During this process, focus is 
placed on the as is condition and factors 
that attempted to predict the future were 
intentionally removed from the initial set. 
Examples of the latter would be Politics and 
Sustainability.

The variables shown in Figure 3 are 
then grouped into a set of initial categories 
which determine the intermediate nodes in 
the Bayesian belief network. For example, 
from the factors identified, a category that 
manifested itself early in the analysis was 

How it’s been
tested

Reliability (High,
Med, Low)

A prototype has
been developed Development

Testing is complete

How good is good
enough?

Proven (in mission
environment

Has Reliability for
the element been
defined or
demonstrated?

Existence

Demonstrated Use

Used in Mission

All Requirements
for component
verified

What requirements
have been verified
by testing

Thorough testing
done to address all
“care abouts”

Unit tested, lab
tested, “high
fidelity”
operationally
relevant tested,
operational tested

How well does it
work in which
environment (code,
unit test, lab,
operational, real)

Tested in
operational
environment

Has operational
testing been done

Demonstrated
operation on lab
data, live data

The component
has been tested
in a simulated
environment

Verification
Prior Assessment

Knowledge

Documentation
Complexity

Impact of Technology
Change

Figure 4. A snapshot of the Bayesian network categories and specifically the sub-categories for verification

verification. Figure 4 shows the initial set of 
care-abouts that were collected into this the 
verification category. As will be seen later 
the verification category was ultimately re-
duced to two sub-factors, test environments 
and level of testing passed.

Once the initial categories are deter-
mined, the levels (states) of each node are 
clearly defined. States must be mutually 
exclusive. Figure 5 shows the main category 
knowledge and its three sub-nodes or 
sub-categories: research, proof-of-concept, 

and prior usage. Figure 4 reflects the pro-
gression of the development of the model 
structure as it portrays which intermediate 
categories depend on which leaf nodes.

The final step in the construction of 
the Bayesian network is to determine the 
underlying probabilities and construct a 
conditional probability table (CPT) for 
each node. Since no priors or previous 
underlying distributions existed in the 
case of the TRA process, the conditional 
probabilities for the nodes were elicited 
and compiled from Subject Matter Experts. 
Table 2 provides some example entries 
in the CPT for the impact of technology 
change node. The interpretation of the table 
says given the conditions in the first three 
columns, how likely is it that the state of 
the node (in this example, the impact of 
technology change) is classified as High? 
Moderate? or Low?

With a basis in Bayes theorem and 
the laws of probability, the overall model 
shown in Figure 6 is constructed by linking 
the individual CPTs together in accordance 
with the structure of the model, culminat-
ing in the final TRL value. Each individual 
variable then has predictive power over the 
final result, but the influence is interde-
pendent on the values of each of the other 
nodes. That is, a change to a single finding 
may have different results on the final TRL 

Knowledge

What is the status of the
underlying research?

Completed/Not needed
Not completed

How has it been used
in the past?

New (new technology being used
in a new way)

Novel (old technology being used
in a new way)

Reused (old technology being
used in an old way)

To what level as the concept
been demonstrated?

Published work
M&S (Modeling & Simulation)

Lab Demo
Operational Demo

Figure 5. The knowledge category and its sub-categories for the Bayesian 
network model
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assessment depending on the states of the 
other nodes. For example, the quality of 
documentation may have a much stronger 
impact on the eventual assessment for 
an immature system than one which has 
already undergone testing.

MODEL CASE STUDIES
Technology readiness assessments 

(TRAs) from existing or prior programs 
were sought in order to validate the 

Bayesian network model. The questionnaire 
shown in Table 3 reflects the model 
structure shown in Figure 6. Nodes are 
reflected as a category and a sub-node as a 
subcategory. The responses to the individual 
questions of the questionnaire determine 
the values for each of the model’s leaf nodes 
(see Figure 6) which are then combined 
using Bayes theorem and the laws of 
probability. The questionnaire in Table 3 
below reflects a completed evaluation for 

a project whose TRL assessment was a 3. 
No specific details are provided for any 
of the model case studies as the projects 
and systems involved were proprietary 
in nature. It is important to keep in mind 
that the model is not intended to select a 
specific TRL value or to replace the expert 
or judgment of the expert. The model 
serves as a decision aid, not a decision 
maker. One should not compare the model 
against the systems engineering decision 

Table 2. Sample conditional probability table (CPT) for the impact of technology change node

Control of 
Technology 

Change 

Frequency 
of  Technology 

Change 

Magnitude 
of Technology 

Change 
Explanation High Moderate Low

Managed Frequent Large 

If managed technology change frequently 
occurs and the magnitude of that change 
is large how likely is the impact of that 
technology change to be:  High? Moderate? 
Low? 

33 34 33 

Managed Never Small 

If managed technology change never occurs 
and the magnitude of that change is small how 
likely is the impact of that technology change 
to be:  High? Moderate? Low?

0 0 100 

Unmanaged Infrequent/ 
Seldom Small 

If unmanaged technology change 
infrequently/seldom occurs and the 
magnitude of that change is small how likely 
is the impact of that technology change to be:  
High? Moderate? Low? 

60 30 10 

No errors found 100
0
0Critical errors found

Only non-critical errors

Correctness

Current 100
0
0Not Current

Somewhat Current

How current?

Missing only non-critical docs
Missing critical docs

100
0

0

All documentation present

0No documentation present

Completeness

Lab
Relevant

100
0

0

Analytic

0Operational

Test Environments

Not completed 100
Completed/Not needed 0

Research

New (new tech, new way)
Novel (old tech, new way)

100
0

Reuse (old tech, old way) 0

Prior Usage

100
0
0
0
0
0
0
0
0

1

1

2
3
4
5
6
7
8
9

Historical TRL

Lab Demo 100

Published Work 0

Operational Demo 0

M&S 0

Proof–of–Concept

No 100
Yes or Unknown 0

Has the Context Significantly Changed

Integration
Acceptance

100
0

0

Unit/Component
0None

0Operational

Level of Testing Passed

Moderate
Few

0
0

100

Many
Interdependencies

Moderate
Few

0
0

100

Many
Intra-dependencies

Moderate
Small

0
100

0

Large
Scale

Infrequent
Never

100
0

0

Frequent
Frequency of Technology Change

Managed
Unmanaged

100
0

Control of Technology Change

Small
Large

100
0

Magnitude of Technology Change

Excellent 85.0
12.5

2.5
Adequate
Insufficient

Excellent 64.4
27.527.5
8.12

Adequate
Insufficient

High 32.0
35.0
33.0

Medium
Low

Strong 57.3
22.2
20.4

Medium
Low

Documentation

Quality

Verification

Complexity

Impact of Technology Change

Technology Readiness Level
Knowledge

Basis Confidence

N/A
9
8
7
6
5
4
4
2
1 2.44

8.75

4.66
4.24
9.57
16.6
18.1

7.0
0

18.7

6.08±2.1

Minimum TRL
100

0
0
0
0
0
0
0
0

1
2
3
4
5
6
7
8 
9

1±0

High 11.0
17.0
72.0

Moderate
Low

High 25.0
34.0
41.0

Medium
Low

12.5Proven

13.0Conceptual
51.0Implemented
23.0Qualified

Figure 6. The final Bayesian network model
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Questionnaire:

Table 3. Bayesian Network Project Questionnaire

Category Subcategory Question Possible Answers (Select/highlight one) 

Documentation

Quality

Correctness: How 
accurate is the 
documentation?

 No Errors Found
 Only non-critical errors found
 Critical Errors Found

How current: How 
current is the 
documentation?

 Current
 Somewhat current
 Not current

Completeness How complete is the 
documentation?

 All Documentation Present
 Missing only non-critical documents
 Missing critical documents
 No documentation present

Documentation includes e.g., acquisition documents, architecture products, engineering specs, test plans, and 
general references.

Critical errors are those which cause a misunderstanding of the facts and significantly impact the outcome.

A critical document is any document that contains data elements essential to understanding the technology under 
evaluation.

Knowledge

Research What is the status of the 
underlying research?

 Completed/Not needed
 Not completed

Proof-of-Concept
To what level has 
the concept been 
demonstrated?

 Published work
 M&S (Modeling and Simulation)
 Lab Demo
 Operational Demo

Prior Usage How has it been used in 
the past?

 New (new technology being used in a new way)
 Novel (old technology being used in a new way)
 Reused (old technology being used in an old 

way)

Prior 
Assessment

Historical TRL
Was it previously 
assessed at a certain TRL 
level? If so, what level?

 2 (Insert previous TRL 1-9 here, or leave blank if 
not previously assessed)

Context Change
Has the context 
significantly changed 
(from prior assessment)?

 Yes or Unknown (or, not previously assessed)
 No

Context change must be linked to a prior TRL assessment. If no prior assessment occurred, select “Yes or Unknown.” 

Impact of 
Technology 

Change

Magnitude What is the magnitude of 
technology change?

 Large
 Small

Frequency What is the frequency of 
technology change?

 Frequent
 Infrequent/Seldom
 Never

Control

What is the control of 
technology change?
(How well is change 
controlled?)

 Managed
 Unmanaged
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process but rather view the model as reinforcing that process. 
The model can be used beforehand to help frame the assessment 
process or afterwards to support validation of the process and to 
perform risk evaluation. The following questionnaire instructions 
were given to the survey respondents.

Questionnaire Instructions: We are exploring the use of a 
Bayesian network approach to enhance the current method of 
performing technology readiness assessments (TRAs). The model 
uses the responses to the series of questions shown in the table 
that follows to ultimately generate a probability distribution of 
the TRL levels. Your feedback is important as it will be used to 
validate our model and assist us in determining the way forward.

Using the program response as input data, the Bayes net model 
produces the resulting TRL probability distribution shown in 
Figure 7. As one can see the Bayes net model predicts about a 38% 
probability that the TRL = 2 and about a 30% probability that the 
TRL = 3. As was stated initially, the project had been assessed at a 
TRL = 3. One can also describe the results in terms of cumulative 
probability. In other words, there is approximately a 91% probabil-
ity that the TRL is equal to or less than 3.

Another case study was provided where the system was assessed 
at a TRL of 7. Inputting the data from responses to the model 
questionnaire yielded the TRL probability distribution shown 
in Figure 8. It can be seen that the model indicates that there is 
approximately a 95% probability that the TRL is greater than a 7. 
In both these case studies, evidence from the probabilities of the 

states of the nodes is compared with the TRL assessment done by 
subject matter experts or expert engineers using their judgment. 
These experts are the decision makers who decide the TRL value. 
In the first case study the model indicates that the TRL is about 
8% more likely equal to a value of 2 compared to the TRL of 3 
assessed by the SMEs. For this first case the model prediction 
aligns closely with the judgment of the experts. In the second 
system, the model shows a TRL assessed at two levels higher than 
what the SMEs concluded. Here the judgment of the experts is 

Table 3. Bayesian Network Project Questionnaire (continued)

Category Subcategory Question Possible Answers (Select/highlight one) 

Complexity 

Scale What is the scale?
 Large
 Moderate
 Small

Intra-
dependencies

How many 
intradependencies?

 Many
 Moderate
 Few

Inter-
dependencies

How many 
interdependencies?

 Many
 Moderate
 Few

Scale refers to, for example, the scope, magnitude, quantity, or breadth of the technology within the system.

Intra-dependencies are within the technology.

Interdependencies are between the technologies.

Verification 

Test 
Environments

What is the environment 
in which the testing was 
conducted?

 Analytic
 Lab
 Relevant
 Operational

Level of Testing 
Passed

What level of testing has 
been passed?

 None
 Unit/Component Testing
 Integration testing
 Acceptance testing
 Operational testing

Level of testing refers to the highest level of testing that has been fully completed and successfully passed, with 
accompanying evidence.

Testing need not be comprehensive to be completed.

45.00%

40.00%

35.00%

30.00%

25.00%

20.00%

15.00%

10.00%

0.00%

5.00%

1 2 3 4 5 6 7 8 9 N/A

TRL Probabilities

Figure 7. Bayesian network model results for a case study 
where the assessed TRL = 3
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demonstrated to be more conservative 
than the model. The authors were not in a 
position to go back to the experts to discuss 
the differences with them and attempt to 
determine why their assessment was more 
risk adverse. The results from a third case 
study are shown in Figure 9. Here the 
results do not reflect a clear peak or plateau 
but rather a range of values. The model 
conservatively predicts a distribution 
of TRL values around the assessed TRL 
value of 6. Such is the case in the absence 
of a clear winner or with incomplete or 
inconsistent data, for example when the 
judgments of a group of experts vary.

In summary, the use of the Bayesian net-
work model provides the systems engineer 

1 2 3 4 5 6 7 8 9 N/A

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

0.00%

10.00%

TRL Probabilities

Figure 8. Bayesian network model results for a case study 
where the assessed TRL = 6

1 2 3 4 5 6 7 8 9

18.00%

20.00%

16.00%

14.00%

12.00%

10.00%

8.00%

6.00%

4.00%

0.00%

2.00%

TRL Probabilities

Figure 9. Bayesian network model results for a case study 
where the assessed TRL = 7

with a level of confidence in the judgments 
made by the SMEs in assigning a TRL. In 
addition to the three case studies illustrated 
here, the model is being used with other 
systems and validation work is ongoing.

FUTURE WORK
Work is currently being done to construct 

a Bayesian network model for integration 
readiness levels (IRLs). The IRL is a metric 
to measure the integration maturity 
between two or more components. IRLs, in 
conjunction with TRLs, form the basis for 
the system readiness level (SRL), a systems 
level metric generated from the systems 
readiness assessment (SRA) process [9]. The 
IRL values range from 0 to 9. The original 

IRL scale definitions, as proposed by Sauser 
[8], have been modified to be consistent 
with the foundation of the TRL scale and to 
reflect more closely our development model. 
IRLs represent the systematic analysis of the 
interactions between various components 
and provide a consistent comparison of the 
maturity between integration points. IRLs 
provide a means to reduce the risk involved 
in maturing and integrating components 
into a system. Similar to the TRL, the use 
of a Bayesian network model for IRLs 
will provide a mathematical method to 
consistently combine and validate the 
judgment of experts in the determination 
of the integration readiness of system 
components. 
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INTRODUCTION

 ABSTRACT
Although a number of recent studies on using Bayesian Networks (BN) for system reliability estimation have been proposed, these 
studies are based on the assumption that a pre-built BN was designed to represent the system. In these studies, the task of building 
the BN is typically left to a group of specialists who are BN and domain experts. However, the process of building a system-spe-
cific BN is generally very time consuming and may lead to incorrect deductions. As there are no existing studies to eliminate the 
need for a human expert in the process of system reliability estimation, this paper introduces a holistic method that uses historical 
data about the system to be modeled as a BN and provides efficient techniques for automated construction of the BN model and 
estimation of the system reliability. Moreover, very limited human intervention is sufficient for the process of BN construction and 
reliability estimation.

A Bayesian Approach 
for Estimating Complex 
System Reliability

Ozge Doguc and Jose Emmanuel Ramirez-Marquez
Copyright © 2009 by Ozge Doguc. Published and used by INCOSE with permission.

System reliability can be defined as 
the probability that a system will 
perform its intended function during 
a specified period of time under stat-

ed conditions (Gran and Helminen 2001). 
Traditionally, engineers estimate reliability 
by understanding how the different com-
ponents in a system interact for system suc-
cess. Based on this understanding, typically 
a graphical model (usually in the form of a 
fault tree, a reliability block diagram, or a 
network graph) is constructed to represent 
component interactions. Using the graphi-
cal model, different analysis methods such 
as minimal cut sets, minimal path sets, 
Boolean truth tables, etc (Coyle, Arno, and 
Hale 2002; Fenton, Krause, and Neil 2002; 
Gopal, Kuolung, and Nader 2001) are used 
to represent system reliability quantitative-
ly. At the end, the reliability characteristics 
of the components in the system are intro-
duced into the mathematical representation 
in order to obtain a system level reliability 
estimate. This approach is valid whenever 
the system success or failure behavior is 
well understood. However, for complex sys-
tems (that is, systems with large numbers 
of components and/or complex component 
interactions), understanding component 

interactions, which usually requires inter-
vention of a domain expert, may prove to 
be a challenging problem.

 Bayesian networks (BN) have been 
proposed as an alternative to traditional 
reliability estimation approaches (Amasaki 
et al. 2003; Boudali and Dugan 2006; Gran 
and Helminen 2001). BN have significant 
advantages over traditional frameworks, 
partly because they are easy to use in inter-
action with domain experts in the reliability 
field (Sigurdsson, Walls, and Quigley 2001). 
Current approaches for reliability analysis 
via a BN (Amasaki et al. 2003; Bobbio et al. 
2001; Sigurdsson, Walls, and Quigley 2001) 
use specialized networks, each of which 
is designed for a specific system. In these 
studies, the BN structure to be used for es-
timating system reliability should be known 
a priori. This assumption presupposes that 
the BN should be built by an expert who 
has “adequate” knowledge about the system 
behavior.

However, finding such an expert may 
not be possible at all times for every system 
under consideration. Moreover, the number 
of such experts is limited and finding one 
is usually difficult and costly (Lagnseth and 
Portinale 2005). Also, human intervention 

is always open to unintentional mistakes, 
which could cause discrepancy in the 
results. These issues are particularly true 
in complex systems, where the number of 
components and interactions are larger and 
thus, the likelihood of miscalculations can 
be substantial.

To address these issues, this study 
introduces a holistic method for estimating 
system reliability by linking BN construc-
tion from raw component and system data, 
association rule mining, and evaluation 
of conditional probabilities. Based on our 
literature review, this is the first study that 
incorporates these methods for estimating 
system reliability to reduce the need for 
human intervention. The proposed method 
automates the process of BN construction 
by using the K2 algorithm (a commonly 
used association rule mining algorithm), 
which has been proven to be efficient and 
accurate for finding associations (Cooper 
and Herskovits 1992) from a dataset of 
historical data about the system. Moreover, 
unlike previous approaches, the proposed 
solution is not system specific, it can be 
applied to systems following any kind of 
configuration (two terminal, k-terminal, 
all terminal, etc.) and behavior (binary, 
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capacitated, and multi-state). In essence, 
our approach can build a BN and estimate 
reliability for any system when observed 
system data is available (Doguc and 
Ramirez-Marquez 2007).

LITERATURE SURVEY
Estimating systems reliability using BN 

dates back as early as 1988, when it was first 
defined by Barlow (1988). The concept of 
BN has been discussed in several earlier 
studies (Cowell et al. 1999; Jensen 2001; 
and Pearl 1988); the idea of using BN in 
systems reliability has gained acceptance 
within the last decade because of the 
simplicity it allows to represent systems and 
the efficiency for evaluating component 
associations. More recently, BN have found 
applications in software reliability (Fenton, 
Krause, and Neil 2002; Gran et al. 2000), 
fault finding systems (Jensen 2001), and 
general reliability modeling (Bobbio et 
al. 2001). In recent studies, predefined 
BN are used for reliability estimation for 
specific systems. For example, Gran and 
Helminen (2001) study on building BN 
for nuclear power plants and introduce a 
hybrid method for estimating the reliability 
of the plant. In their study, they considered 
the nuclear plant as two subsystems: a 
software system and the plant hardware. 
Therefore, they combined two BN that were 
being used for corresponding systems: 1) 
The Halden Project (HRP) (Dahll and 
Gran 2000) uses a BN for risk assessment 
based on disparate evidences. 2) The VTT 
Automation (Helminen 2000) focuses on 
the reliability of software-based systems 
using BN. Additionally they discuss 
another challenge; each BN uses a different 
modeling and simulation environment.

In another study Helminen and 
Pulkkinen present a BN-based method for 
reliability estimation of computer-based 
motor protection relay (Helminen and 
Pulkkinen 2003). In their study, Helminen 
and Pulkkinen assume existence of a BN 
that models the system and introduce 
methods for estimating prior probabilities 
and assessing the system reliability 
accordingly.

In addition to these, Amasaki et al. 
(2003) use BN for software quality as-
sessment. They modeled the phases of a 
software system as a BN, and by using this 
model they simulated the faults that may 
occur in their system. After this step, they 
used the actual data and performed sen-
sitivity analysis of the BN model that they 
constructed. In addition to these, Boudali 
and Dugan (2006) introduce a method for 
reliability assessment in dynamic systems 
by using temporal BN; where the system 
components change states at different time 
intervals. Moreover, Singh et al. (2001) 

presents their work on reliability estimation 
in component based systems. They classify 
the component-based system reliability es-
timation methods into three as state based 
models, path based models, and additive 
models.

Although all of the studies introduced in 
this section use BN for reliability estima-
tion, they require human domain experts to 
evaluate the prior probabilities and under-
stand the structure of the BN. In the next 
section, we introduce a methodology that 
automates the process of BN construction 
and reduces the need for a human expert 
for system reliability estimation.

BAYESIAN NETWORKS
As discussed in the previous sections, 

BN have been used in various studies for 
estimating system reliability. In this section 
we first provide definitions of BN and Bayes 
theorem. Then we discuss the K2 algorithm 
that we used to create BN in this study.

Using Bayesian Networks for System 
Reliability. One could summarize the BN 
as an approach that represents the interac-
tions between the variables from a proba-
bilistic perspective. This representation is 
modeled as a directed acyclic graph, where 
the nodes represent the variables and the 
links between each pair of nodes represent 
the causal relationships between the vari-
ables. In general, a fundamental assump-
tion for the construction of a BN is that the 
strength of the interaction/influence among 
the graph nodes is uncertain and thus, this 
uncertainty is represented by assigning a 
probability of existence to each of the links 
between nodes.

From systems engineering perspec-
tive, the variables of a BN are defined as 
the components in the system while the 
links represent the interactions of the 
components leading to system “success” 
or “failure.” Under a reliability analysis 
perspective, a variable A in BN constitutes 
the success of a specific system component 
and therefore, p(A) represents the proba-
bility of success for such a component. For 
non-trivial systems – systems not following 
a series, parallel or any combination of 
these configurations – the failure/success 
probability of a system is usually dependent 
on the failure/success of a non-evident 
collection of components. Strictly speaking, 
the probability of success of a component is 
conditional on the available evidence from 
other components. In a BN this dependen-
cy is represented as a directed link between 
two components, forming a child and 
parent relationship, so that the dependent 
component is called as the child of the 
other. Therefore, the success probability of 
a child node is conditional on the success 

p (X3 | X1, X2) = p (X1, X2)
p (X1, X2 | X3) p (X3) (1)

X1

X3 X5

System
Behavior

X2 X4

Figure 1. A sample Bayesian network

probabilities associated with each of its par-
ents (Fenton, Krause, and Neil 2002). The 
conditional probabilities of the child nodes 
are calculated by using the Bayes’ theorem 
via the probability values assigned to the 
parent nodes. Also, absence of a link be-
tween any two nodes of a BN indicates that 
these components do not directly interact 
for system failure/success thus, they are 
considered independent of each other and 
their probabilities are calculated separately.

To illustrate these concepts, the BN 
shown in Figure 1 presents how five 
components of a system interact. In this 
BN the child-parent relationships of the 
components can be observed, where on 
the quantitative side the degrees of these 
relationships (associations) are expressed as 
probabilities (Lagnseth and Portinale 2005).

In Figure 1 the topmost nodes (X1, X2, 
and X4, representing components 1, 2, and 
4 respectively) do not have any incoming 
edges, therefore they are conditionally in-
dependent of the rest of the components in 
the system. The prior probabilities that are 
assigned to these nodes should be known 
beforehand — with the help of a domain 
expert or using historical data about the 
system. Based on these prior probabilities, 
the conditional probability table (CPT) that 
belong to a dependent node, such as X3, 
can be calculated using Bayes’ theorem as 
illustrated by equation (1):

Equation (1) shows that the probability 
for the node X3 is independent of nodes 
other than X1 and X2 in the system. Similar 
to prior probabilities, CPT can be comput-
ed by using historical system and compo-
nent data. However, an important question 
on how to discover the associations among 
the system components still remains. As an 
alternative to using a domain expert for this 
purpose, an unsupervised BN construction 
algorithm, K2 is used in this paper.

The K2 Algorithm. The K2 algorithm, 
for construction of a BN, was first defined 
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by Cooper and Herskovits (1992) as a 
greedy heuristic search method. This algo-
rithm searches for the parent set for a node 
that has the maximum association with it. 
The K2 algorithm is composed of two main 
factors: a scoring function f to quantify 
the associations and rank the parent sets 
according to their scores, and a heuristic to 
reduce the search space to find the parent 
set with highest degree of association. The 
K2 algorithm would need to examine all 
possible parent sets, i.e., starting from the 
empty set, it should consider all subsets of 
set of possible parents without the heuristic. 
With the help of the heuristic, the K2 algo-
rithm does not need to consider the whole 
search space; it starts with the assumption 
that the node has no parents and adds 
incrementally that parent whose addition 
most increases the scoring function. The 
K2 algorithm stops adding parents to the 
node when addition of no single parent can 
increase the score.

ILLUSTRATION OF OUR METHODOLOGY
This section provides a step-by-step 

explanation of the BN construction frame-
work and system reliability estimation 
method discussed in the previous section. 
Table 1 presents an example historical 
dataset that contains observations on the 
sample system shown in Figure 1 with five 
components labeled X1 to X5. Each row 
in Table 1 shows the states of the system 
components at an instance of time t i; when 
the observation was done. For the sake of 
simplicity and without loss of generality in 
the proposed method, component failure 
data exhibits binary behavior.

That is, for each component Xi, the value 
of 0 represents failure while the value of 
1 represents full functionality for the cor-
responding observation. Also, in Table 1, 
information about the overall System Be-
havior is provided in last column.

Our proposed method uses a dataset 
such as displayed in Table 1; finds asso-

ciations between the columns 
(system components); calculates 
the degrees of these associations; 
builds the associated BN and 
finally uses it to estimate overall 
system reliability. In the first step 
of our method the K2 algorithm 
starts with the first component 
in the dataset, X1. Since X1 does 
not have any succeeding com-
ponents (i.e., possible candidate 
parents), the K2 algorithm skips 
it and picks the second compo-
nent in the dataset, which is X2.

For X2, there are two alter-
native parent sets: the empty 
set φ, or X1. Therefore, the K2 
algorithm computes the scoring 

function f for each of these alternative par-
ent sets and compares the results. Then, the 
set of candidate parents with highest f score 
is chosen as the parent set for X2. At the 
end of this iteration the values 1

2310 and 1
3600 

are calculated and then compared; and the 
former, representing the score of the empty 
set {φ}, picked as the parent. So the K2 
algorithm decides that X2 has no parents, 
which means that there is no association 
between X1 and X2.

In the next iterations of the K2 algo-
rithm, the number of possible candidate 
parent sets to be considered and the num-
ber of computations for f score calculation 
increases. Skipping the details, f scores of 
the candidate parent sets for the X3 com-
ponent are given in Table 2. Because the 
K2 algorithm iterates on the components 
according to their ordering in dataset, 
components X4 and X5 are not taken into 
account as candidate parents for X3. The K2 
algorithm selects the set {X1, X2} as parent 
set of X3, because it has the highest f score. 
The number of computations grows with 
the order of the component in the system, 
and when the K2 algorithm finishes with 
the last column (System Behavior in Table 
1), it outputs the BN structure displayed in 
Figure 1. 

The next step of the proposed method 
estimates system reliability using the BN 
that was constructed by the K2 algorithm. 

Besides the associations that were discov-
ered by the K2 algorithm in the previous 
step, the inference rules should be used to 
calculate the conditional probabilities be-
tween the nodes in the BN. The conditional 
probabilities are essential in calculating the 
overall reliability of the system, as they rep-
resent the degrees of associations between 
components of a system. Each component 
with a non-empty parent set in the network 
is associated with a CPT. In this step, with 
the help of CPT and the prior probabilities 
that X1 and X2 have, the success probability 
value for X3 can be calculated. According 
to the BN structure in Figure 1, compo-
nents X1 and X2 are independent of others; 
therefore their success probabilities can 
be directly inferred from the observa-
tions dataset in Table 1. From Table 1 it 
can be evaluated that p (X1 = 1) = 0.5 and 
p (X2 = 1) = 0.6 and the probability of suc-
cess for component X3 can be calculated as 
0.57 using Bayes’ rule provided in Equation 
(1). Extending the computations for the 
other components in the network, success 
probabilities for the rest of the components 
in the sample system can be evaluated; such 
that p (X4  = 1) = 0.4 and p (X5 = 1) =  0.6. In 
the last step, the system reliability can be 
calculated by using these probability values 
and the CPT of the “system behavior” node 
in the BN structure given in Figure 1. The 
success probability for the system behavior 
node is calculated as 0.72 or 72%; which is 
the reliability of the sample system present-
ed in this section. The proposed method for 
estimating system reliability using obser-
vations dataset is superior to previously 
defined methods due to its unsupervised 
nature; almost all steps of the required 
computations can be carried out without 
any human intervention.

EXPERIMENTAL ANALYSIS
In this section, experimental analysis 

on the performance of our proposed 
method for system reliability estimation 
is provided. In order to give a better 
perception of analysis, performances of the 
two phases of the proposed method (BN 
construction and reliability estimation) are 
examined separately. First, performance 
and correctness of the K2 BN construction 
algorithm is analyzed using historical data 
(obtained via Monte Carlo simulation) for 
the following BN.

BN displayed in Figure 2 represent 
different systems with various components. 
For our experimental analysis, separate 
data sets – similar to Table 1 – are used for 
each example BN. As it was explained in 
the previous section, the K2 algorithm uses 
historical system data as input.

Therefore running time of this algorithm 
is highly dependent on the size of the input 

Table 1. Dataset for the illustrative example

Observation X1 X2 X3 X4 X5
System 

Behavior

1 1 1 0 0 0 1
2 0 1 1 0 0 0
3 1 0 1 1 1 1
4 0 0 0 0 0 0
5 1 1 1 0 1 1
6 0 1 1 1 0 0
7 1 0 0 1 0 1
8 0 0 1 1 1 1
9 1 1 1 0 0 0

10 0 1 0 1 1 1

Table 2. f scores for all possible candi-
date parent sets for X3

1
2772

1
2310φ

{X1}

1
3600{X2}

1
288{X1, X2}

 Parent Set f score
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data set, that is, number of nodes (n) and 
number of observations (t). Each of the 
case BN shown in Figure 2 has different 
number of nodes ranging from 5 to 16, and 
the performance of the K2 algorithm on 
each BN is analyzed using different input 
data sets. Figure 3 shows the experimen-
tal results on the performance of the K2 
algorithm. It can be observed from Figure 
3 that the running time of the K2 algorithm 
is quadratic (O(n 2)) with the number of 
nodes and linear with the number of obser-
vations. This is an expected result, since the 
K2 algorithm reduces the time-complexity 
of finding associations from exponential 
(2 n) to quadratic (n 2). This brings the 
conclusion that for even substantially large 
systems (n > 100) the K2 algorithm will be 
efficient to use (that is, doing 10,000 itera-
tions instead of 2100).

The number of observations that are used 
for discovering the associations between 
system components is an important mea-

sure for both efficiency of the K2 algorithm 
and correctness of the constructed BN. 
Also accuracy of the reliability estimation is 
highly dependent on correctness of the un-
derlying BN model. Errors in the K2 algo-
rithm would lead to incorrect assignments 
of associations in the BN; which will end up 
with inaccuracies in the reliability values. 
Once the BN is correctly constructed, 
estimating the system reliability is simple 
and straightforward as discussed in the pre-
vious section; therefore, in this section we 
evaluate correctness of the BN constructed 
by the K2 algorithm. The K2 algorithm can 
be expected to find out associations more 
accurately when more observations used as 
input (Cooper and Herskovits 1992). Using 
the constructed BN, error rate (ρ) of the 
K2 algorithm can be calculated by using 
Equation (2):

ρ = =AM
AT

+AFP AFN
AT

(2)

In Equation (2), a false positive (AFP) is 
defined as an association decided by the 
K2 algorithm; however does not exist in 
the actual BN given in Figure 2. Converse-
ly, a false negative (AFN) is defined as an 
existing association in the actual BN that is 
missed by the K2 algorithm. Both should 
be taken into account while calculating 
accuracy (where accuracy = 1– ρ) of the 
K2 algorithm with the constructed BN. In 
this study, correctness of the constructed 
BN models are evaluated by using data sets 
with 10, 100 and 1000 observations for 
different case networks. General analysis 
results on the correctness and accuracy are 
provided in Figure 4.

According to Figure 4, regardless of the 
size of the constructed BN, accuracy of the 
BN model increases as more observations 
are used. This is an expected result, since 
associations between the components are 
decided by using the observations and 
these associations can be figured out more 
precisely when more observations available.

We used the case networks displayed in 
Figure 2 in our experiments. Our experi-
mental results for the accuracy of BN con-
struction as well as the CPU times for BN 
construction and reliability estimation are 
presented in Table 3. For our experiments 
we used a computer equipped with an 
Intel Centrino 2Ghz CPU and 2GB RAM. 
Moreover, we implemented our proposed 
method in Matlab 7.0.

CONCLUSIONS
Estimating system reliability using BN is 

a very popular practice and has been widely 
studied recently. There are numerous meth-
ods in the literature defined for estimating 
system reliability, which are mainly focused 
on doing it for specific systems, such as 
nuclear plants. However, none of these 
studies dealt with the problem of requiring 
a human expert to construct the BN. This 
is the first study that introduces a meth-
odology for efficient construction of BN 
models and estimating system reliability, 
with limited very human expert require-
ment. The proposed method uses historical 
data about the system to be modeled and 
constructs the BN model automatically. 
The K2 algorithm is used for this purpose, 
which is a popular and efficient association 
rule mining method.

Next it was shown that the system 
reliability can efficiently be estimated by 
using the BN model. According to the 
experimental results, reducing the running 
time of finding associations from O(2 n) 
to O(n 2), the proposed methodology can 
work efficiently even with substantially 
large systems. Moreover, the BN models 
constructed by the K2 algorithm are shown 
to be accurate, especially when more 

1

4 5 6

2 3

Figure 2. Case BN tested on the K2 algorithm

Figure 3. Running time of the K2 algorithm
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Table 3. Compilation of results for case BN

Case 
Network

Number 
of Nodes

K2 algorithm 
CPU time 
(seconds)

Reliability 
Estimation CPU 
time (seconds)

Accuracy of the 
constructed BN 

(w/1000 observations)
Number of 
associations

 1 4 5 1.839 100.00% 0.465
 2 6 8 10.471 100.00% 0.981
 3 5 8 5.567 100.00% 0.830
 4 8 11 37.898 90.91% 1.004
 5  7 12 26.012 91.66% 0.991
 6 16 24 148.762 87.50 1.587

historical data about the system is available. 
As expected, the experimental results show 
that when 1,000 historical observations on 
the system are available, the constructed 
BN are more than 90% accurate. Accuracy 
of the constructed BN is highly influential 
on the correctness of the system reliability 
values, as incorrect associations in the BN 
would lead to biased calculations while 
estimating system reliability. In conclusion, 
the methodology introduced in this study 
will help systems engineers as it minimizes 
human interaction and provides efficient 
ways of automatically building a BN model 
and estimating system reliability. 
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