10-Feb-2016: A Few Words Before the Presentation

- **Courtesy Please mute your phone (*6 toggle)**
- Feb 23: Joint Chapter meeting hosted by Southern AZ Rick Dove, INCOSE Fellow Topic: Discovering Agile SE Process Fundamentals at INCOSE
- Feb 24: Los Alamos Engineering Council Banquet (our Chapter is part of this Council).

 RSVP to Mike Steinzig (667-5772 or steinzig@lanl.gov) by Noon on February 19.

 Los Alamos Golf Course Clubhouse, Los Alamos, NM. Cost: \$10 as member.

 Social Time: 5:30 pm, Dinner: 6pm, Lecture: 6:40 to 7:30 pm
- Mar 9: Next month's meeting Duke Buster, Staff SE, Honeywell Aerospace Advanced Technology Topic: Observations on Using Models as Specifications

Tutorial selection email inquiry needs your input Chapter annual survey email needs your input

Considering INCOSE SEP accreditation? <u>www.certificationtraining-int.com/csep-preparation-course/</u>
2016 Course Schedule (close by, others available as well):

- April 25 29 | Albuquerque, NM
- May 9 13 | Denver, CO
- June 27 July 1 | Los Angeles, CA
- August 15 19 | Austin, TX

And Now - Introductions

First slide, not recorded but retained in pdf presentation posting.

Enchantment Chapter Monthly Meeting

<u>10 February 2016 – 4:45-6:00 pm</u>:

Towards a New Paradigm for Management of Complex Engineering Projects: A System-of-Systems Framework

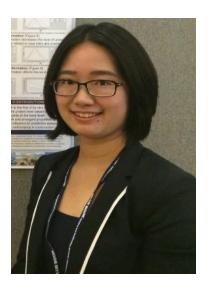
Jin Zhu, Ph.D. candidate, Florida International U., jzhu006@fiu.edu Dr. Ali Mostafavi, Asst Prof, Florida International U., almostaf@fiu.edu

Abstract: Complex engineering projects consist of different interconnected networks of processes, activities, stakeholders, resources, and information. The traditional project management paradigm, which identifies complex engineering projects as monolithic systems, has failed to capture the interdependencies and dynamic interactions at the interfaces between different entities and networks in complex projects. In this research, a system-of-systems (SoS) framework is proposed towards creation of tools and techniques for integrated management of complex engineering projects. Two principles (i.e., base-level abstraction and multi-level aggregation) are used to develop the proposed framework. At the base level, complex engineering projects are abstracted as different entities (i.e., human agents, information, and resources). At higher levels (i.e., activity level, process level, and project level), different entities are aggregated via their dynamic interactions and interdependencies. Using the proposed SoS framework, new dimensions of engineering project assessment and management filed, such as the impacts of attributes of base-level entities, and project-level emergent properties can be explored. The application of the proposed framework is shown in a complex construction project. The findings highlight the capability of the proposed framework in providing an integrated approach for bottom-up assessment of performance in engineering projects under different uncertain scenarios.

Download slides today-only from GlobalMeetSeven file library or anytime from the Library at www.incose.org/enchantment

NOTE: This meeting will be recorded

Management of Complex Engineering Projects: A System-of-Systems Framework


Things to Think About

How is complex engineering project management affecting your work?

What did you hear that will influence your thinking?

What is your take away from this presentation?

Speaker Bios

Jin Zhu is a Ph.D. candidate of Civil Engineering at Florida International University. In her Ph.D. research, she investigates emergent properties in complex construction projects using system-of-systems thinking. Her research aims at better assessment and management of performance in complex construction projects.

Dr. Ali Mostafavi is an assistant professor at OHL School of construction in the College of Engineering and Computing at Florida International University. He obtained his Ph.D. in Civil Engineering from Purdue University. His research expertise is in the area of sustainable and resilient infrastructure systems, system-of-systems modeling, and construction engineering.

Towards a New Paradigm for Management of Complex Engineering Projects: A System-of-Systems Framework

Jin Zhu

PhD Candidate
Civil and Environmental Engineering
Florida International University
jzhu006@fiu.edu

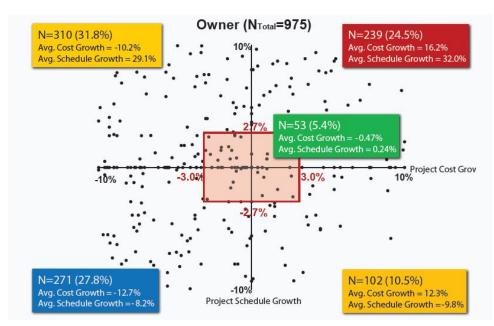
Dr. Ali Mostafavi

Assistant Professor
OHL School of Construction
Florida International University
almostaf@fiu.edu

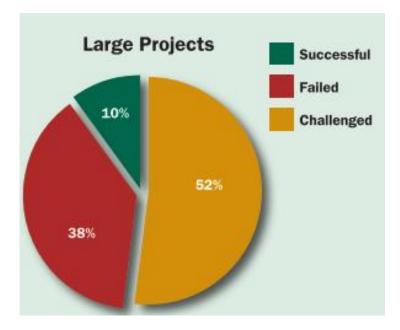
Problem Statement

Performance inefficiency: A major challenge in engineering projects

- ➤ Performance failures significantly affect the efficiency of investments in engineering projects across different industries:
 - ☐ Cost overruns
 - ☐ Schedule delays
 - Quality deficiencies



Problem Statement


Many engineering projects cannot meet their performance goals.

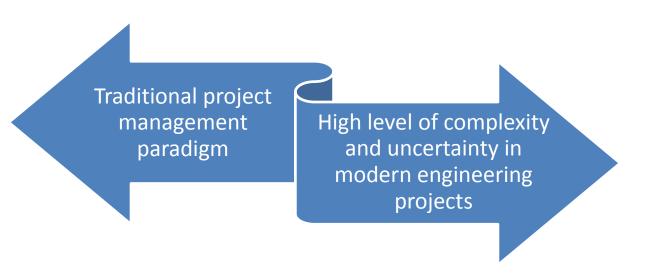
1 out of 20 construction projects met both authorized cost and schedule goals

Construction Industry Institute (2012)

1 out of 10 large software development projects can be identified as successful

The Standish Group (2013)

EPSoS Framework



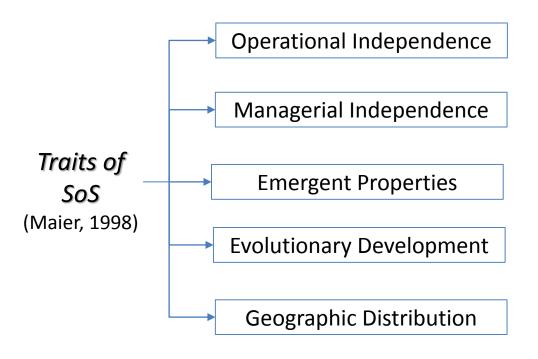
Problem Statement

Traditional project management paradigm is not effective in managing modern engineering projects.

- Traditional project management paradigm
 - ☐ Conceptualization of projects: monolithic system
 - ☐ Approach: top-down
 - ☐ Method: centralized planning

and control

A paradigm shift in assessment of engineering projects based on the proper conceptualization of engineering projects is needed.


EPSoS Framework

2

Research Objective

Complex engineering projects are systems-of-systems. The objective of this study is to proposed a system-of-systems framework for the assessment of

complex engineering projects.

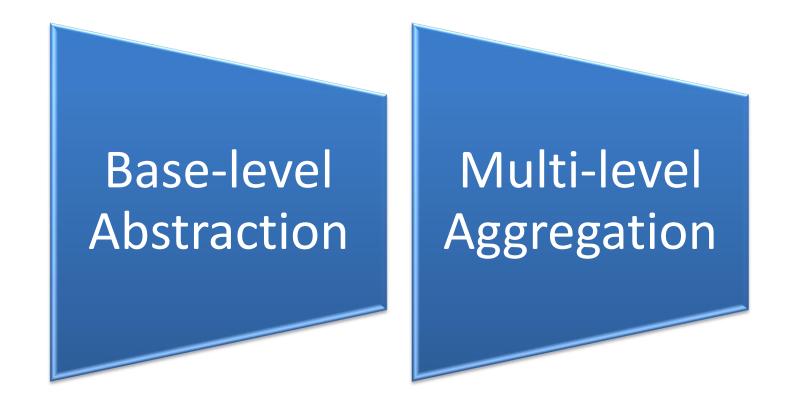
Design process

Finance process

EPSoS Framework

Production/construction process

Procurement process



Safety process

Engineering Project System-of-Systems Framework

An engineering project system-of-systems (EPSoS) framework is proposed based on two principles (DeLaurentis and Crossley, 2005):

Problem Statement Research

Engineering Project System-of-Systems Framework

Abstraction

Base-level

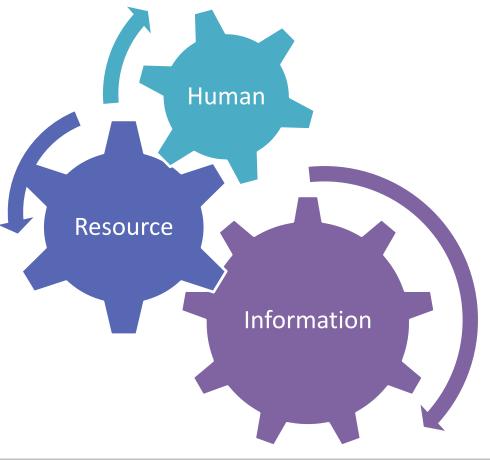
Aggregation Multi-level

Three types of entities are abstracted at the base level.

Human agent

Entities who conduct production work, process information and make decisions

Resource

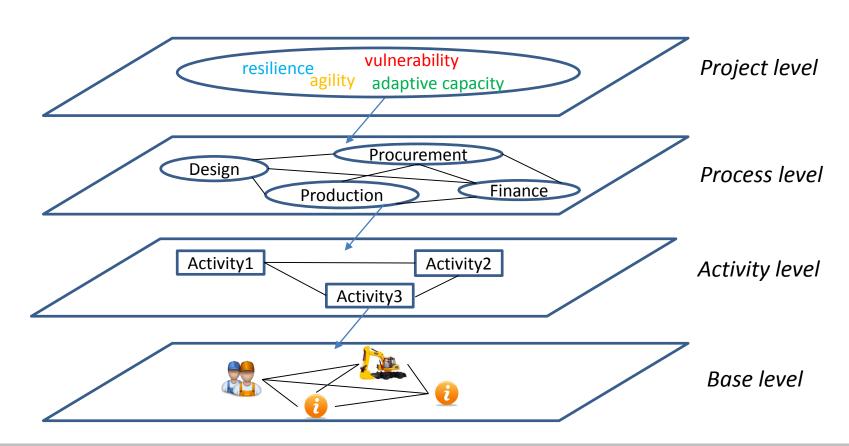


Entities that facilitate production work, information processing and decision making

Information

Knowledge or facts that affect dynamic behaviors of human agents

Examples of attributes of base-level entities:


Base-level entity types	Classification	Attributes	
	Production work agent	Productivity, attention allocation	
Human Agent	Information processing agent	ocessing agent Response time	
	Decision making agent	Risk attitude	
Россиись	Material	Quantity, quality, cost	
Resource	Equipment	Productivity, cost	
Information	Existing information Completeness, ac		
information	Emergent information	Completeness, accuracy, recency	

Engineering Project System-of-Systems Framework

Four levels in engineering projects

Base-level Abstraction

Multi-level Aggregation

Problem Statement

4

Application Example

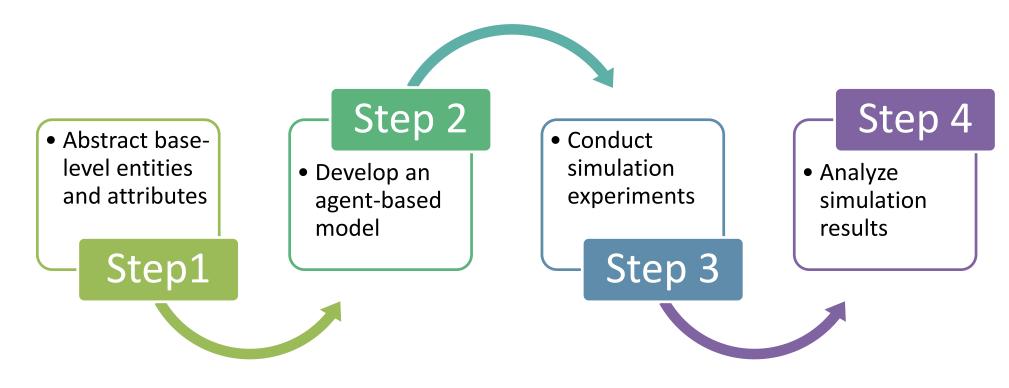
The application and effectiveness of the proposed EPSoS framework is shown in a complex construction project.

Study 1

How do the attributes and micro behaviors of base-level entities affect project performance? Study 2

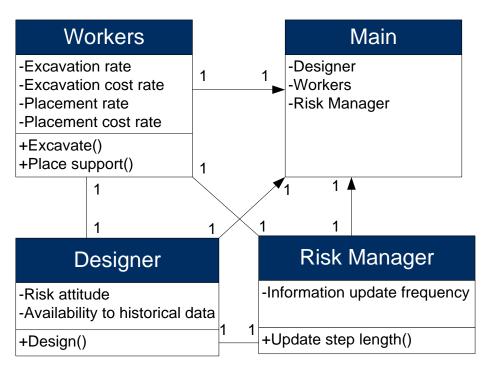
How to get a better understanding of project behaviors under uncertainty via emergent properties?

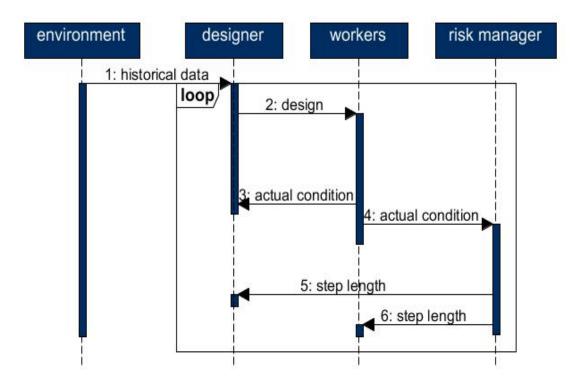
4 Applica


Application Example

Case Description

- A complex construction project (Ioannou and Martinez, 1996)
- ☐ 1600-meter tunnel
- ☐ Varied ground conditions (Good, Medium, or Poor)
- ☐ New Austrian Tunneling Method (NATM)
- ☐ Adjusting design during the construction phase based on the changes of the ground condition


Study 1: Investigate the impacts of attributes and micro behaviors of base-level entities on project performance

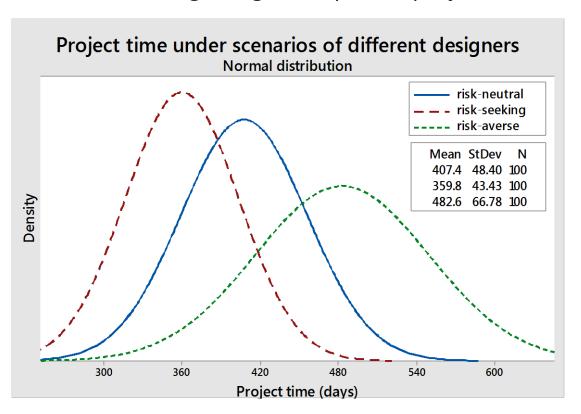

Step1: Abstract base-level entities and attributes

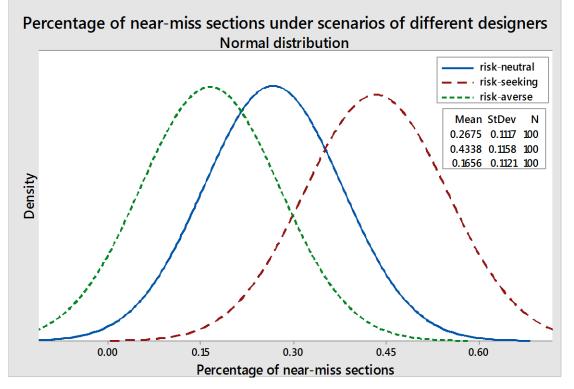
Examples of base-level entities and their attributes in the case project					
Category	Base-level entities	Classification	Attributes		
Human	Designer	Production/information processing/decision-making	response time, risk attitude		
Agent	Workers	Production/information processing	Productivity, cost, response time		
Resource	Excavator	Equipment	Productivity, cost		
Resource	Support	Material	Quantity, quality, cost		
	Historical data	Existing information	completeness, accuracy		
Information	Current ground condition	Emergent information	completeness, accuracy, recency		
	Step length	Emergent information	completeness, accuracy, recency		

Step 2: Develop an agent-based model

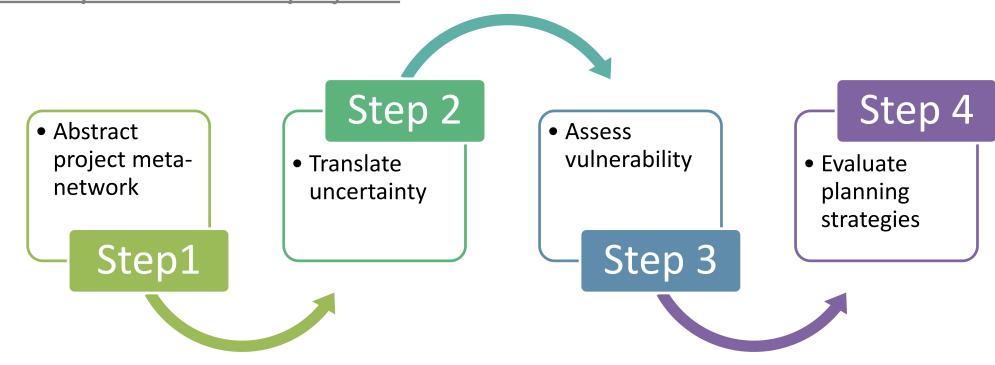
Sequence diagram

Step 3: Conduct simulation experiments


	Risk attitude	Impact
	Risk seeking	Design decisions are made for better outcomes with higher levels of uncertainty
	Risk neutral	Design decisions are not affected by the degree of uncertainty
Designer	Risk averse	Design decisions are made for outcomes with lower levels of uncertainty

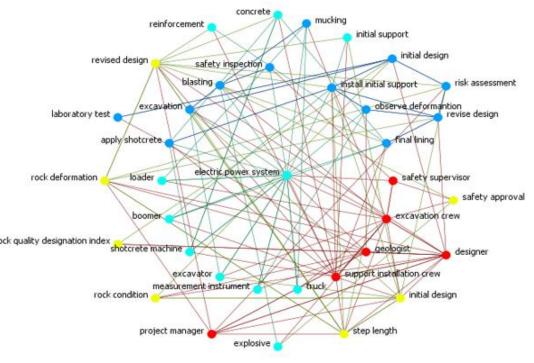

Simulation experiment example:

changing the risk-attitude of designer


Step 4: Analyze simulation results

> A risk-seeking designer improves project time, but increases the near-miss sections

Study 2: Investigate emergent properties arising from interactions and interdependencies in projects



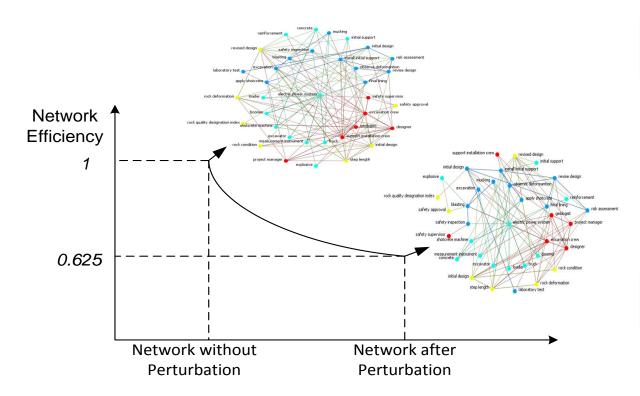
4

Application Example Study 2: Emergent properties

Step 1: Abstract project meta-network

	Agent	Information	Resource	Activity
Agent	who works	who knows	who can use	who is assigned to
	with and	what	what resource	what activity
	reports to			
	whom			
Information		what	what	what information
		information	information is	is needed for what
		is related to	needed to use	activity
		other	what resource	
		information		
Resource			what resource	what resource is
			is used for	needed for what
			other	activity
			resources	
Activity				what activity is
				related to other
				activities

Meta-network of the tunneling project case


Nodes	36
Links	118
Density	0.187

Step 2: Translate uncertainty

Uncertainty	Examples	Network Perturbation	
Agent-related	 Staff turnover Dereliction of duty Safety accident or injury 		
Resource-related	 Defective materials Equipment breakdown Late delivery of material 		Agent N
Information-related	 Unclear scope/design Limited access to required knowledge Miscommunication 		Resource Informate Activity

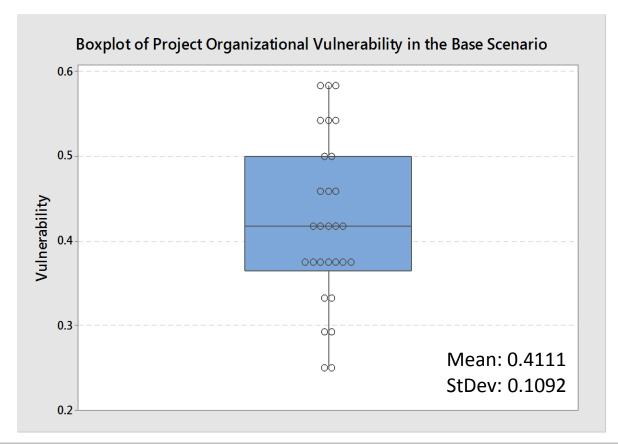
- Node
- ce Node
- ation Node
- Node

Step 3: Assess Vulnerability (Carley and Reminga, 2004)

Vulnerability assessment of project meta-networks

Network Efficiency

 the percentage of activities that can be completed by the agent assigned to them based on whether the agents have the requisite information and resources


Project Vulnerability

 the extent of the changes in network efficiency due to uncertainty-induced perturbations

Step 3: Assess Vulnerability

Uncertain environment of the tunneling project

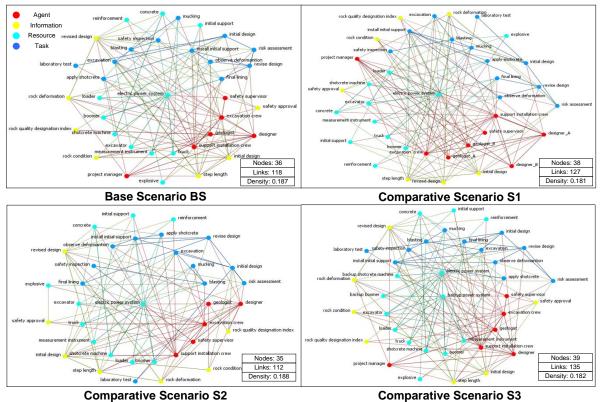
	. .	
Uncertain Events	Perturbation	Probability
Dereliction of duty	Agent-related	Medium
Staff turnover	Agent-related	Low
Inadequate information	Information-related	Medium
Equipment breakdown	Resource-relation	Medium
Late delivery of material	Resource-related	High
Power system failure	Multiple resource- related	Medium
Severe weather	Agent and resource- related	Low
Economic fluctuation	Agent and resource- related	Low

Step 4: Evaluate planning strategies

Examples of planning strategy reflections in project meta-networks

	Generalization of labor	Division of labor
Task Assignment		
	Centralized decision-making	Decentralized decision-making
Decision-making authority		
	Redundancy	Non-redundancy
Resource management		

Agent NodeResource NodeInformation NodeActivity Node


4

Application Example Study 2: Emergent properties

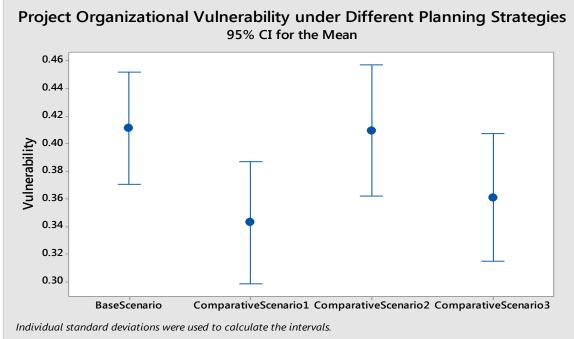
Step 4: Evaluate planning strategies

Scenarios by combinations of planning strategies

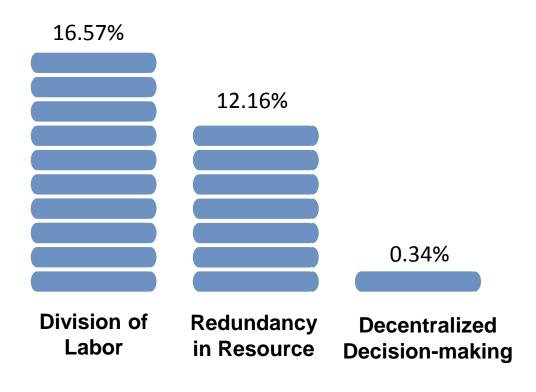
Planning Strategies			S1	S2	S3
Task assignment	Generalization of labor	$\sqrt{}$			
	Division of labor				
Decision- making	Centralized	$\sqrt{}$	$\sqrt{}$		
authority	Decentralized				
Resource management	Non- redundancy				
	Redundancy				

Project meta-networks of the tunneling project under different planning scenarios without perturbations

Problem Statement


Research Objective

EPSoS Framework


Application Example

Concluding Remarks

Step 4: Evaluate planning strategies

	N	Mean	StDev	95% CI	effectiveness
Base Scenario	30	0.4111	0.1092	(0.3703, 0.4519)	-
Comparative Scenario 1	30	0.343	0.1186	(0.2987, 0.3873)	16.57%
Comparative Scenario 2	30	0.4097	0.1267	(0.3624,0.4570)	0.34%
Comparative Scenario 3	30	0.3611	0.1235	(0.3150, 0.4072)	12.16%

Effectiveness of planning strategies in mitigating project vulnerability compared to the base scenario

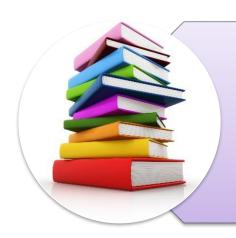
Concluding Remarks

The results from the application example show that the EPSoS framework is capable of facilitating investigation of: (1) micro behaviors of base-level entities and (2) project emergent properties using:

A proper level of abstraction

Capture micro behaviors and interdependencies at the base-level

A bottom-up aggregation approach


Capture emergent properties as macro behaviors at the project level

A dynamic perspective

Consider the impacts of uncertainty and dynamic changes

5

Concluding Remarks

Body of knowledge

- A new theoretical lens for assessment of engineering projects
- First of its kind to assess the performance measures at the project level based on the micro-behaviors and interdependencies of project entities at the base level
- Exploration of emergent properties

Body of practice

- Design more resilient and less vulnerable engineering projects in preplanning phase
- Develop contingency plan based on the expected performance loss and recovery

Reference

- [1] Construction Industry Institute, "Performance Assessment 2012," Austin, TX, 2012.
- [2] The Standish Group, "CHAOS Manifesto 2013," Boston, MA, 2013.
- [3] D. A. DeLaurentis and W. A. Crossley, "A Taxonomy-based perspective for Systems of Systems design methods," in *IEEE International Conference on Systems, Man and Cybernetics*, 2005, vol. 1, pp. 86–91.
- [4] M. W. Maier, "Architecting principles for systems-of-systems," *Syst. Eng.*, vol. 1, no. 4, pp. 267–284, 1998.
- [5] P. G. Ioannou and J. C. Martinez, "Comparison of construction alternatives using matched simulation experiments," *J. Constr. Eng. Manag.*, vol. 122, no. 3, pp. 231–241, 1996.
- [6] K. M. Carley and J. Reminga, "Ora: Organization risk analyzer," 2004.

The research team at I-SoS Research Group focuses on solving the challenges pertaining to the sustainability and resilience of civil systems at the interface of the infrastructure, economy, environment and society based on System-of-Systems (SoS) analysis, computational simulation, and quantitative data analysis models.

Jin Zhu

PhD Candidate
Civil and Environmental Engineering
Florida International University
jzhu006@fiu.edu

Dr. Ali Mostafavi

Assistant Professor
OHL School of Construction
Florida International University
almostaf@fiu.edu

Management of Complex Engineering Projects: A System-of-Systems Framework

Things to Think About

How is complex engineering project management affecting your work?

What did you hear that will influence your thinking?

What is your take away from this presentation?

Please

The link for the online survey for this meeting is

https://www.surveymonkey.com/r/enchant_02_10_16

https://www.surveymonkey.com/r/enchant_02_10_16

Look in GlobalMeet chat box for cut & paste link.

Slide presentation can be downloaded now/anytime from:

The library page at: www.incose.org/enchantment Recording will be in library tomorrow.