
1 Copyright © Dan Sturtevant © 2012 The MathWorks, Inc.

Technical Debt in Large Systems:
Understanding the cost of software
complexity
Dan Sturtevant, Ph.D.
dan.sturtevant@sloan.mit.edu

INCOSE Webinar
June 12th, 2013

With thanks to:
Alan MacCormack, Steven
Eppinger, Chris Magee, Daniel
Jackson, Carliss Baldwin

2 Copyright © Dan Sturtevant

Background

3 Copyright © Dan Sturtevant

Designing and Maintaining Large Systems is
Really Hard

•  Changing requirements
•  Growth and scaling limits
•  Changing environment
•  Changing technology

landscape
•  Architectural lock-in
•  Loss of information (esp.

about design intent)
•  Mismatch between

organization and architecture
•  Change propagation
•  Design “decay”
•  Emergent properties

4 Copyright © Dan Sturtevant

Systems are Becoming Larger, Much of the
Complexity Now in Code

Large systems are:

–  Psychologically complex: No single person can understand
how they work. Design process must be split across teams.

–  Inherently complex: Whole does not behave in a manner that
follows from the independent functioning of its parts.

Software especially so:

–  “Software entities are more complex for their size than perhaps
any other human construct because no two parts are alike…
[they] differ profoundly from computers, buildings, or
automobiles, where repeated elements abound” [Brooks]

5 Copyright © Dan Sturtevant

Large Designs Can Easily Become
Unmanageable

Regions within a system that are
more architecturally complex
have fewer hierarchical,
modular, or layering structures
mediating the relationships
between system elements.

Regions with high complexity:
•  May be initially designed to

be integral or entropy may
have eroded boundaries later.

•  May have higher likelihood of
side-effects or change
propagation.

6 Copyright © Dan Sturtevant

Architects Fight to Impose and Maintain
Control

They:
–  Decompose design into manageable chunks so that teams can

act independently and coordinate across boundaries
–  Identify the things that should be managed centrally, enforce

“design rules.”
–  Make sure the system delivers needed functionality, with good

performance, at acceptable cost.
–  Endow system with various beneficial non-functional properties

(“illities”) such as maintainability, flexibility, evolvability,
scalability, safety, etc.

They do this by building patterns into designs

7 Copyright © Dan Sturtevant

Design Patterns

Naturally evolved organisms and man-made systems are
often made up of patterns that help them scale while
keeping complexity under control:

–  From a macro-level they are hierarchical
–  This hierarchy will be made up of modules
–  This hierarchy may contain layers or abstractions
–  Some components will be reused

These features can be reasoned about as specific
types of networks or matrices

8 Copyright © Dan Sturtevant

Hierarchies Modules

A B C D E F

G H

J K

L

I

A

C D E F G H I J K LB

Reuse Layers

A

B

C

D

E

F
G

H

J

K

L

I

A B C

D E F

G H

J K L

I

9 Copyright © Dan Sturtevant

Combining Hierarchy, Modularity, and Reuse

A

B C

D

E

F

G

H

J
K

L

I

 Network Design Structure Matrix

w

x
y

z

G
H

K

D

F

L

E

C

A
B

I
J

DC HE JA IGB KF L

10 Copyright © Dan Sturtevant

Why Does This Control Complexity?

A

B C

D

E

F

G

H

J
K

L

I

A

B C

D

E

F

G

H

J
K

L

I

Imagine that two people add links which violate
design rules

11 Copyright © Dan Sturtevant

G
H

K

D

F

L

E

C

A
B

I
J

DC HE JA IGB KF L

4
4

4

4

4

6

4

3

3
3

4
4

4733 3331
2 34 33 4 3

G
H

K

D

F

L

E

C

A
B

I
J

DC HE JA IGB KF L

4
4

4

5

4

6

4

3

3
4

4
4

4933 4331
2 34 43 4 3

G
H

K

D

F

L

E

C

A
B

I
J

DC HE JA IGB KF L

144

12
12

12

12

12

12

12

12

12
12

12
12

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

G
H

K

D

F

L

E

C

A
B

I
J

DC HE JA IGB KF L

6
6

12

6

6

12

6

3

3
3

6
12

31
2 3661

2 66 61
2 6 3 81

Good

Bad

Direct Indirect

12 Copyright © Dan Sturtevant

Architectural Complexity and the Power of
Indirect Links

G
H

K

D

F

L

E

C

A
B

I
J

DC HE JA IGB KF L

144

12
12

12

12

12

12

12

12

12
12

12
12

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

13 Copyright © Dan Sturtevant

Research Question

What costs does architectural complexity within
a software system impose on the firm that
develops and maintains it?

14 Copyright © Dan Sturtevant

Three Costs Drivers Considered

1.  Does complexity increase defect density?

2.  Does complexity impair software developer
productivity?

3.  Does complexity increase the probability of

development staff turnover?

15 Copyright © Dan Sturtevant

Significance of Research

If we can
§  Reliably estimate the

architectural complexity
of different regions within
a software system’s
design

§  Quantitatively estimate
the costs that a firm must
shoulder while developing
or maintaining complex
regions of that code

Then we could
§  Make better tradeoffs

between time to market,
system performance, and
complexity management

§  Estimate the potential
dollar-value of redesign

§  Have more success
managing refactoring

§  Perform due-diligence -
audit systems prior to
acceptance or acquisition

16 Copyright © Dan Sturtevant

Analysis Approach

1.  Case study of successful firm: “Iron Bridge Software”
2.  Selected 8 successive software versions developed in

fixed release cycles.
–  Measured complexity from source code
–  Measured development activity during development windows.

Extracted info about significant cost / waste drivers

3.  Tested relationship between cost and complexity using
regression analysis

4.  Performed isolated simulations to determine the size of
the impact

17 Copyright © Dan Sturtevant

Data and Data Sources

Source code examined:
–  8 historical releases
–  All C++, other significant languages.

Understand Static Analysis Tool:
–  McCabe cyclomatic complexity
–  File size and other file-based metrics
–  Dependency structure, DSMs

§  for C++ code only

Version control system:
–  Age of files
–  Patches to files, changesets
–  Lines changed per patch

§  lines added + deleted
–  Link to change tracking ID
–  Login for person who submitted patch

Change tracking system:
–  Determine if changeset / patch was for

enhancement, task, bug fix
§  patches with multiple IDs split

contribution among types

–  Bug subtypes: Critical, Market

HR Databases:
–  Identify software developers

§  distinguish from testers, consultants, etc
–  Determine length of employment
–  Determine if manager

MATLAB, R, STATA, Lattix, and
Ruby graph library code:

–  Network manipulation
–  Visualization
–  Statistical routines

18 Copyright © Dan Sturtevant

Data Management and Analysis Software
Created for this Investigation

Database

Object-Relational
Model Scripting

Layer

Human
Resource
Databases

Code to extract
and import data

from multiple
sources

Source Code
Management

System

Change
Tracking
System

Source Code
for Multiple

Software
Releases

Code to
construct tables

for use in
analysis

Mathematics
and

Visualization
Software
Packages

Code to
manipulate data,

perform
regressions,
and visualize

data
Relational
Database

Dependency
extraction

Static analysis

Runtime
snooping

Build system
auditing

19 Copyright © Dan Sturtevant

Measuring Complexity and Cost

§  Architectural Complexity
§  McCabe Cyclomatic Complexity
§  More defects
§  Lower productivity
§  Higher staff turnover

20 Copyright © Dan Sturtevant

Measuring Complexity and Cost

§  Architectural Complexity
§  McCabe Cyclomatic Complexity
§  More defects
§  Lower productivity
§  Higher staff turnover

21 Copyright © Dan Sturtevant

The MacCormack, Baldwin, & Rusnak
Approach To Architectural Classification

1.  Extract dependencies between source code files and
construct a network graph

2.  Compute the indirect dependency (transitive closure)
graph

3.  Get “visibility scores” for each file from the indirect
dependency graph

4.  Classify each file as peripheral, utility, control, or core
based on its visibility scores.

22 Copyright © Dan Sturtevant

Step 1: Extract Dependencies Between Files
and Construct a Network Representation

File B

Function
Implementation

Method Implementation
Class Definition

Global Data Definition

Dependency
Extractor

Network

Files are nodes

Dependencies are
directed edges

File A

Function Call
Method Call

Class Instantiation
Class Inheritance

Reference Global Data

dependency

23 Copyright © Dan Sturtevant

Step 2: Compute the Transitive Closure of the
Graph

D

C

A B

D

C

A B

D
C
B
A

DCBA

D
C
B
A

DCBA

Traditional
Network
View

Design
Structure
Matrix

Direct
Dependencies

Indirect
Dependencies

24 Copyright © Dan Sturtevant

Example: Direct & Indirect Dependencies for a
Commercial Software System

25 Copyright © Dan Sturtevant

Step 3: Get “Visibility Scores” for Each File
From Indirect Dependency Graph

Visibility Fan In Visibility Fan Out
File A 3 1
File B 3 1
File C 2 3
File D 1 4

D

C

A B
D
C
B
A

DCBA

26 Copyright © Dan Sturtevant

Fan In Fan Out

Direct

Indirect

Example: Scores for Release 7 C++ Files

27 Copyright © Dan Sturtevant

Step 4: Classify Files by Indirect Scores

If a file has VFO “Low” VFO “Low” VFO “High” VFO “High”
and VFI “Low” VFI “High” VFI “Low” VFI “High”
Then the file is
considered

Peripheral Utility Control Core

28 Copyright © Dan Sturtevant

Example: Release 7 C++ Direct DSM
File-system (left) and Sorted (right)

Module

Utility
band

Utility
files

Core
files

Peripheral
files

Control
files

VFO
"high"

VFO
"low"

VFI
"low"

VFI
"high"

Plateau
divides
regions

Plateau
divides
regions

29 Copyright © Dan Sturtevant

Meaning of Architecture Categories

§  Peripheral files do not influence and are not influenced by
much of the rest of the system.

§  Utility files are relied upon (directly or indirectly) by a large
portion of the system but do not depend upon many other
files themselves. They have the potential to be self-
contained and stable.

§  Control files invoke the functionality or accesses the data of
many other nodes. They may coordinate collective behavior
so as to bring about the system level function.

§  Core files connect to form highly integral clusters, often
containing large cycles in which components are directly or
indirectly co-dependent. These regions are hard to
decompose into smaller parts and may be unmanageable if
they become too large.

30 Copyright © Dan Sturtevant

Files Counts By Architectural Complexity Type

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

Peripheral	
 U4lity	
 Control	
 Core	

31 Copyright © Dan Sturtevant

Measuring Complexity and Cost

§  Architectural Complexity
§  McCabe Cyclomatic Complexity
§  More defects
§  Lower productivity
§  Higher staff turnover

32 Copyright © Dan Sturtevant

Measuring Cyclomatic Complexity For a File

§  Find the McCabe score for the most complex function
contained in a file

§  Classify the file based on its score:

McCabe Score McCabe Classification
1-10 Low
11-20 Mid
21-50 High
51-Inf Untestable

33 Copyright © Dan Sturtevant

Files By McCabe Type

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

McCabe	
 Low	
 McCabe	
 Mid	
 McCabe	
 High	
 McCabe	
 Untestable	

34 Copyright © Dan Sturtevant

Measuring Complexity and Cost

§  Architectural Complexity
§  McCabe Cyclomatic Complexity
§  More defects
§  Lower productivity
§  Higher staff turnover

35 Copyright © Dan Sturtevant

Analyzing Complexity & Quality

Measure
–  Architectural complexity
–  McCabe complexity

Count
–  Number of changes made

to fix bugs.
–  Number of lines changed

to fix those bugs.

Control for
–  Number of changes made

to implement features or
do other non-bug related
tasks

–  File size
–  File age
–  Software version being

released

94,364 source files observed over 8 software releases
For each:

36 Copyright © Dan Sturtevant

Regression Models

Defects go:
–  Up with file size
–  Up with development activity in file
–  Down with file age
–  Up with McCabe complexity
–  Up with Architectural complexity

Negative Binomial regressions used because dependent
variable is count data that is overdispersed

37 Copyright © Dan Sturtevant

Regression Model Details

Predicting LOC changed in a file to fix bugs. (Negative binomial model)
Parameter Model 1:

controls
 Model 2:

cyclomatic
complexity

 Model 3:
architectural
complexity

 Model 4:
combined

LOC in file 0.00156486 *** 0.0011712 *** 0.00143183 *** 0.00104115 ***
Non-bug lines change 0.00372536 *** 0.00353601 *** 0.00355368 *** 0.00335322 ***
File age -0.10050305 *** -0.11730352 *** -0.1026859 *** -0.11853279 ***
Cyclomatic: mid 0.774729 *** 0.70392074 ***
Cyclomatic: high 0.93363115 *** 0.95513134 ***
Cyclomatic: very high 0.91923347 *** 0.96444595 ***
Architectural: utility 0.2018549 * 0.35797922 ***
Architectural: control 0.94111466 *** 0.84721344 ***
Architectural: core 1.14823521 *** 1.14683088 ***
Residual Deviance 30370 30418 30428 30475
Degrees of Freedom 94353 94350 94350 94347
AIC 227861 227512 227403 227079
Theta 0.030212 0.030692 0.030836 0.031295
Std-err 0.000285 0.00029 0.000291 0.000295
2 x log-lik -227837.302 -227482.025 -227373.406 -227042.861
N = 94364 files observations (from 8 releases)
Dummy variables for each of 8 releases omitted.
Significance codes: .<0.1, *<0.05, **<0.01, ***<0.001

38 Copyright © Dan Sturtevant

Using Simulations to Interpret Results

§  Once regression complete, run simulations holding
control variables constant and test impact of varying
predictors

§  Control variables set to mean values:
–  File size: 550 LOC
–  Non bug-fix patches per file: 0.47
–  Non bug-fix LOC submitted per file: 33
–  File age: 4.198 years

§  Test all combinations of complexity scores:
–  McCabe: Low, Mid, High, Untestable
–  Architectural: Peripheral, Utility, Control, Core

§  See how bugs counts are affected

39 Copyright © Dan Sturtevant

Very	
 High	
 5.86	
 8.39	
 13.66	
 18.42	

High	
 5.78	
 8.28	
 13.47	
 18.18	

Mid	
 4.49	
 6.44	
 10.47	
 14.13	

Low	
 2.22	
 3.18	
 5.18	
 6.98	

Periph	
 U4lity	
 Control	
 Core	

Interpreting Results via Simulation:
Defect Density

Architectural: 3.1X bugs
Combined:
8.3X bugs

McCabe: 2.6X bugs

M
cC

ab
e

C

la
ss

ifi
ca

tio
n

Architectural Classification

40 Copyright © Dan Sturtevant

Interpreting Results via Simulation:
Defect Density

Architectural: 3.1X bugs
Combined:
8.3X bugs

McCabe: 2.6X bugs

Very	
 High	
 15.1%	
 20.3%	
 29.3%	
 35.9%	

High	
 14.9%	
 20.1%	
 29.0%	
 35.6%	

Mid	
 12.0%	
 16.4%	
 24.1%	
 30.0%	

Low	
 6.3%	
 8.8%	
 13.6%	
 17.5%	

Periph	
 U4lity	
 Control	
 Core	

M
cC

ab
e

C

la
ss

ifi
ca

tio
n

Architectural Classification

41 Copyright © Dan Sturtevant

Measuring Complexity and Cost

§  Architectural Complexity
§  McCabe Cyclomatic Complexity
§  More defects
§  Lower productivity
§  Higher staff turnover

42 Copyright © Dan Sturtevant

Analyzing Complexity & Developer Productivity

Measure
–  % effort working in files

with high architectural
complexity (“Core” files)

–  % effort working in files
with high cyclomatic
complexity

Count
–  Number of lines of code

contributed during the
release

Control for
–  Time with company
–  Is a manager?
–  % effort working in new

files
–  % effort fixing bugs
–  Software version being

released
–  Person-specific dummy

Sample: 478 developer-releases, 178 unique people
For each:

43 Copyright © Dan Sturtevant

Regression Models

Productivity goes:
–  Up with years employed
–  Up with work in new (rather than legacy files)
–  Down with work on bug fixes (rather than features or tasks)
–  Down with work in architecturally complex files
–  No relationship found with cyclomatic complexity

Negative Binomial fixed-effects panel data regressions
used because:

–  Dependent variable is count data that is overdispersed
–  Tests differences within the same developer over multiple

releases.

44 Copyright © Dan Sturtevant

Regression Model Details

Predic'ng	
 LOC	
 produced	
 by	
 a	
 developer	
 to	
 implement	
 enhancements	
 for	
 one	
 release.	
 	
 (Nega've	
 binomial	
 panel	
 data	
 model)	

Parameter	
 Model	
 1:	

developer	

aBributes	

	
 	
 Model	
 2:	
 type	

of	
 work	

	
 	
 Model	
 3:	

cycloma'c	

complexity	

	
 	
 Model	
 4:	
 all	

controls	

	
 	
 Model	
 5:	

architectural	

complexity	

	
 	
 Model	
 6:	

combined	

	
 	

Lines	
 for	
 bug	
 fixes	
 -­‐0.000071	
 	
 	
 -­‐0.000068	
 	
 	
 -­‐0.000060	
 	
 	
 -­‐0.000067	
 	
 	
 -­‐0.000077	
 .	
 -­‐0.000078	
 .	

Log(years	
 employed)	
 0.279600	
 0.492500	
 0.483700	

Is	
 manager?	
 -­‐0.283000	
 -­‐0.251600	
 -­‐0.292900	

Pct	
 lines	
 in	
 new	
 files	
 1.801000	

 1.699000	

 1.714000	

Pct	
 lines	
 high	
 cycloma4c	
 -­‐1.166011	

 -­‐0.648300	
 .	
 -­‐0.613000	
 .	

Pct	
 lines	
 in	
 core	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 -­‐0.610943	
 .	
 -­‐0.618600	
 *	

Residual	
 Deviance	
 560.77	
 	
 	
 558.46	
 	
 	
 560.60	
 	
 	
 558.32	
 	
 	
 560.71	
 	
 	
 558.13	
 	
 	

Degrees	
 of	
 Freedom	
 290.00	
 291.00	
 291.00	
 288.00	
 291.00	
 287.00	

AIC	
 8170.66	
 8135.14	
 8162.14	
 8136.78	
 8166.87	
 8135.75	

Theta	
 0.85	
 0.90	
 0.86	
 0.91	
 0.85	
 0.92	

Std-­‐err	
 0.05	
 0.05	
 0.05	
 0.05	
 0.05	
 0.05	

2	
 x	
 log-­‐lik	
 -­‐7792.66	
 	
 	
 -­‐7759.14	
 	
 	
 -­‐7786.14	
 	
 	
 -­‐7754.78	
 	
 	
 -­‐7790.87	
 	
 	
 -­‐7751.75	
 	
 	

N	
 =	
 478	
 developer/releases	

Dummy	
 variables	
 for	
 each	
 of	
 8	
 releases	
 omi:ed.	
 	
 Dummy	
 variables	
 for	
 each	
 of	
 178	
 developers	
 omi:ed.	

Significance	
 codes:	
 .<0.1,	
 *<0.05,	
 **<0.01,	
 ***<0.001	

45 Copyright © Dan Sturtevant

Interpreting Developer Productivity Results
via Simulation

10655	

6083	

2815	

1567	

5359	

3594	

0	

2000	

4000	

6000	

8000	

10000	

12000	

0%	
 10%	
 20%	
 30%	
 40%	
 50%	
 60%	
 70%	
 80%	
 90%	
 100%	

Li
ne

s	
 o
f	
 c
od

e	

pr
od

uc
ed

	
 d
ur
in
g	

de

ve
lo
pm

en
t	
 	

w
in
do

w
	

Percent	
 of	
 lines	
 a	
 developer	
 submits	
 to	
 Core	
 files	

If	
 only	
 working	
 on	
 features	
 If	
 only	
 working	
 on	
 bugs	
 Under	
 normal	
 condi4ons	

Overall 50% productivity
loss as typical developer
moves from Periphery to
Core

while developer in Core spends more time
on red curve, further harming productivity

In addition, developer in Periphery spends
more time on blue curve

10% productivity
increase if this were
50%

Typical developer works
in Core 70% of time

46 Copyright © Dan Sturtevant

Measuring Complexity and Cost

§  Architectural Complexity
§  McCabe Cyclomatic Complexity
§  More defects
§  Lower productivity
§  Higher staff turnover

47 Copyright © Dan Sturtevant

Analyzing Complexity & Staff Turnover

Measure
–  % effort working in files

with high architectural
complexity (“Core” files)

–  % effort working in files
with high cyclomatic
complexity

Determine
–  Whether person left the

company (voluntarily or
involuntarily) over 8 year
period

Control for
–  Length of employment
–  Managerial status
–  % effort developing in

new files rather than
working in legacy code

–  % effort fixing defects
rather than implementing
features or doing other
non-bug related coding
tasks

Sample of 108 people. For each:

48 Copyright © Dan Sturtevant

Regression Models

Staff turnover goes:
–  Down with productivity
–  Down with managerial status (marginal, P value is 11%)
–  Up with work in architecturally complex files

Did not establish a link for these factors:

–  Years employed
–  Bug fix vs. Enhancement work
–  New file vs. Legacy work
–  Work in files with High/Untestable McCabe complexity

Logistic model used because dependent variable is binary
outcome

49 Copyright © Dan Sturtevant

Predicting turnover among developers (Logistic model)
Parameter Model 1:

developer
attributes

 Model 2:
developer
productivity

 Model 3:
type of
work

 Model 4:
cyclomatic
complexity

 Model 5: all
controls

 Model 6:
architectural
complexity

 Model 7:
full

Years employed -0.0535 -0.0784 -0.0786
Is manager? -0.8123 -1.0545 -1.1398
Lines produced per release -0.0002 . -0.0002 -0.0003 .
Fraction of lines to fix bugs 1.0526 0.6694 0.0579
Fraction of lines in new files -0.1638 -0.6652 -1.3219
Fraction lines in high McCabe files -0.0954 -0.2562 -1.4194
Fraction of lines in core files 3.5440 * 4.1114 *
Residual Deviance 91.525 90.884 93.112 94.03 86.656 87.181 78.632
Degrees of Freedom 105 106 105 106 101 106 100
AIC 97.525 94.884 99.112 98.03 100.66 91.181 94.632
N = 108 software developers
Significance codes: .<0.1, *<0.05, **<0.01, ***<0.001

Regression Models

50 Copyright © Dan Sturtevant

5%
6%

8%
10%

12%

15%

20%

24%

30%

37%

44%

0th 10th 20th 30th 40th 50th 60th 70th 80th 90th 100th

Pr
ob

ab
ili

ty
 o

f h
av

in
g

le
ft

fir
m

 in
 8

 y
ea

r p
er

io
d

Developer’s Rank for Pct. Lines in Core

Interpreting Development Staff Turnover
Results via Simulation

51 Copyright © Dan Sturtevant

Summary of Research Conclusions

52 Copyright © Dan Sturtevant

Results

Architectural complexity
is expensive

A firm can think about
ways to estimate the
savings that would result
from successful redesign
efforts by translating cost-
driver information into
dollar figures.

More defects
–  3.1X increase between

periphery and core
–  2.6X for McCabe,

combined effect 8.3X

Lower productivity
–  50% decline as developer

moves from periphery to
core (conservatively)

Higher staff turnover
–  10x increase in voluntary

and involuntary
terminations

53 Copyright © Dan Sturtevant

Contributions
Academic literature:
•  Demonstration that architecture strongly impacts defect density.

MacCormack metrics are as good as (or better than) the popular
McCabe cyclomatic complexity metric at predicting bugs.

•  Empirical evidence that architecture matters a lot.
•  First study to link architecture to individual productivity.
•  First study to link architecture to staff morale and turnover.
Managerial practice
•  Demonstration that architecture impacts financial performance.
•  Points towards method of estimating financial value of redesign.
•  Identifies a good predictor of developer productivity; helps to

address a fundamental weakness of commonly used software
estimation models such as COCOMO

•  Suggests means of managing redesign efforts and evaluating their
effectiveness.

54 Copyright © Dan Sturtevant

How Do I Improve My System?
Using a data management and analysis system similar to the one
developed for this research, an organization would have a better
ability to visualize software structure, track complexity and its costs,
and attack root causes behind defects and project failures.

Database

Object-Relational
Model Scripting

Layer

Human
Resource
Databases

Code to extract
and import data

from multiple
sources

Source Code
Management

System

Change
Tracking
System

Source Code
for Multiple

Software
Releases

Code to
construct tables

for use in
analysis

Mathematics
and

Visualization
Software
Packages

Code to
manipulate data,

perform
regressions,
and visualize

data
Relational
Database

Dependency
extraction

Static analysis

Runtime
snooping

Build system
auditing

Design Rules

55 Copyright © Dan Sturtevant

Thank you

If you have any questions or comments, please contact
Dan Sturtevant at dan.sturtevant@sloan.mit.edu

To get a copy of the dissertation, go here:
https://wikis.mit.edu/confluence/display/ESDRATA/Dan
+STURTEVANT

