LA-UR-11-04521 Approved for public release; distribution is unlimited

Cost Recovery for Waste Processing at Los Alamos

Presented to INCOSE Chapter Meeting August 10, 2011

Steven Booth AET-2, Process Modeling and Analysis Group Los Alamos National Laboratory

Technical Area-54, Material Disposal Area G

TA-54, Area G is the primary disposal site at Los Alamos for radioactive wastes. Complete closure is scheduled for early FY2016.

Low-Level Waste is buried in pits at Tech Area-54, Material Disposal Area G

Inside a TRU Waste Storage Dome

Loading TRU drums into TRUPACT II containers for transport to WIPP

WIPP truck leaving TA-54 on its way to WIPP in Carlsbad, NM

The WIPP route follows Highway 285 from Santa Fe to Carlsbad, NM (300 miles).

Waste Management at Los Alamos in FY2008 (fully burdened costs)

Waste Processing Cost Basis: Definition of Fixed and Variable Cost

The Team Considered Six Alternative Cost Recovery Models

The Two Components of Alternative 4: Annual Cost Shares and Monthly Invoices

Implementation Issues: Annual Cost Shares

Implementation Issues: Monthly Invoices

Conclusion: Implementation Realities from Idaho and Sandia

$$Share_{x,i} = FC_i \times \frac{Vol_{x,i}^{Forecast}}{Vol_i^{Forecast}}$$
1. Need accurate volume forecasts
5. Balance data
fidelity with ease of
implementation (INEL)
$$UnitCost4_i = \frac{VC_i}{Vol_i^{Forecast}}$$
2. Need accurate
waste tracking system
$$TotalCost_i = \sum_{x=1}^{X} Share_{x,i} + \sum_{x=1}^{X} UnitCost4_i \times Vol_{x,i}^{Actual}$$
4. Use a large pool
of generators (SNL)
3. Need strong cost
accounting verification